
Understanding MPU Usage in Microcontroller-based
Systems in the Wild

Wei Zhou*†
School of Cyber Science and Engineering

Huazhong University of Science and Technology
Wuhan, China

Zhouqi Jiang*
School of Cyber Science and Engineering

Huazhong University of Science and Technology
Wuhan, China

Le Guan
School of Computing
University of Georgia

Athens, USA

Abstract—As more and more microcontroller-based embedded
devices are connected to the Internet, as part of the Internet-
of-Things (IoT), previously less tested (and insecure) devices
are exposed to miscreants. To prevent them from being com-
promised, the memory protection unit (MPU), which is readily
available on many of these devices, has the potential to play an
important role in enforcing defense mechanisms. In this work,
we comprehensively studied the MPU adoption in top operating
systems for microcontrollers. Specifically, we investigate whether
MPU is supported, how it is used, and whether the claimed
security requirement has been effectively achieved by using it.
We conclude that due to the added complexities, incompatibility,
and fragmented programming interface, MPUs have not received
wide adoption in real products. Moreover, although the MPU
was developed for security purposes, it rarely fulfills its designed
functionality and can be easily circumvented in many settings.
We showcase concrete attacks to FreeRTOS and RIoT in this
regard. Finally, we discussed fundamental causes to explain this
situation. We hope our findings can inspire research on novel
usage of MPU in microcontrollers.

I. INTRODUCTION

Deeply embedded systems, which are powered by mi-
crocontroller units (MCUs), have long been used in closed
environments, such as industrial plants and vehicle communi-
cation systems. The reliability and robustness of such systems
were persistently tested in the past decades. However, these
tests were conducted in a benign environment. That is, it is
assumed that no adversary could actively penetrate the system.
Unfortunately, this landscape has changed as more and more
embedded devices are exposed to the Internet, where everyone
can launch attacks remotely.

Since these systems are typically programmed using system
programming languages such as C/C++, memory errors pose a
great threat to their security, especially considering that many
third-party libraries run at the same privilege level as that of
the core program. As a security mechanism, ARM, a leading
chip designer for MCU, proposed, designed, and implemented

*Also with Hubei Key Laboratory of Distributed System, Hubei Engineering
Research Center on Big Data Security.

†Corresponding author.

the memory protection unit (MPU) to protect their chips. The
MPU is a low-cost security extension to ARM MCUs that
safeguards certain sensitive memory regions in case a piece of
code is compromised. Therefore, it is a promising mitigation
technique to memory vulnerabilities. Other MCUs such as
MSP430 FRAM followed this design and implemented similar
hardware.

In this work, we comprehensively investigated the usage
of MPU in top operating systems (OSs) for microcontrollers.
More specifically, we are interested in whether MPU is sup-
ported, how it is used, which kinds of security are claimed,
and whether they are effectively achieved. To our surprise, we
found MPU is seldom used in real products, although popular
OSs largely support it. We attribute this to four reasons.
First, MPU is typically a default off feature on OSs and
needs the developers to explicitly enable it. Second, the added
complexities and compatibility issues make the manufacturers
reluctant to invest in R&D. Third, the introduced overhead on
performance and resource consumption makes it unsuitable for
mission-critical tasks. Finally, although MPU was mostly used
for security purposes, it rarely fulfills its designed functionality
and can be easily circumvented in many settings. We showcase
a concrete attack to FreeRTOS and RIoT in this regard.

Looking forward, we discuss common pitfalls in using
MPU and give recommendations on fixing the reported con-
cerns. We also discuss how future generations of hardware
(ARM TrustZone for MCUs) can make MCU-based systems
more secure.

Responsible Disclosure. All the vulnerabilities described in
this paper have been reported to the corresponding vendors
with technical details. In particular, CVE-2021-43997 has been
confirmed and patched by AWS on 11/12/20211.

II. BACKGROUND

A. What Can MPUs Do?

ARM is a leader in the MCU market. Its Cortex-M series
processors which are based on the ARM-V7M or ARM-
V8M architecture consume a much lower silicon area and
are highly optimized to be energy-efficient and responsive
to interrupts, making them ideal for mission-critical tasks
such as industrial applications. On the other hand, due to the
cost- and power-efficient design, Cortex-M processors sacrifice

1 https://www.freertos.org/security/security_updates.html.

Workshop on Binary Analysis Research (BAR) 2023
3 March 2023, San Diego, CA, USA
ISBN 1-891562-84-3
https://dx.doi.org/10.14722/bar.2023.23007
www.ndss-symposium.org

https://www.freertos.org/security/security_updates.html


security. For example, the memory management unit (MMU)
is absent, which has been used to in many security solutions
for commodity OSs [4].

As a stripped-down version of MMU, MPU enforces
lightweight access control for MCUs. Specifically, an MPU
provides a fixed number of hardware registers (e.g., eight
in Cortex-M4), and enforces access control rules for the
specified memory region. Concretely, a region can have indi-
vidual memory access permissions (e.g., read/write/execution)
and memory attributes (e.g., cacheability and shareability),
depending on the privilege mode the code is running. In ARM
Cortex-M MCUs, only two privilege levels are supported,
corresponding to Ring 0 and Ring 3 in X86. If memory access
violates the permissions programmed in MPU, the processor
generates a MemManage fault (which is usually escalated into
a HardFault). The MPU has been supported in mainstream
ARM MCUs.

B. How to Program MPUs?

ARMv7-M. ARMv7-M is a widely adopted architecture
in ARM MCU chips. It empowers the popular Cortex
M0/M0+/M3/M4/M7 series processors. MPUs in ARMv7-M
enforce access control based on regions (i.e., specific memory
range). Depending on the implementation, 8-16 memory re-
gions can be supported. The range, permission, and attribute
of each memory region are programmed via the Region Base
Address Register (RBAR) and Region Attribute/Size Register
(RASR). Note that only privileged code can access these
registers. Also, a region must be aligned. That is, a region
must start at an address that is multiple of its size. MPU
also imposes restrictions on the region size. More specifically,
the size of a region must be (1) at least 32 bytes, and (2) a
power of two. Consequently, an arbitrarily sized region must
be emulated by an over-sized region (thus up to half of the
region size is wasted) or be pieced together by multiple smaller
regions (thus MPU registers are wasted). Large regions can
be further divided into eight equally sized sub-regions which
can be activated individually. However, these sub-regions all
inherit the same permission settings specified by the parent
region. This feature is achieved by configuring the sub-region
disable field (SRD) of RASR. Regions can overlap and higher-
numbered regions have precedence. Finally, there is a special
region with the least priority that maps the entire system mem-
ory. It only takes effect in privileged mode. When this region
is enabled, it sets the default access permissions for privileged
mode execution. In other words, when memory access does not
fall into any other regions, this default permission is enforced.
In contrast, when memory access occurs in unprivileged mode,
it must explicitly fall into a region. Otherwise, a fault is raised.

ARMv8-M. The ARMv8-M architecture is the successor of
the popular ARMv7-M architecture. It empowers the Cortex-
M23/M33/M35P series MCUs, which has improved MPU
support. First, the number of MCU regions has increased.
Second, the restrictions on the region alignment are relaxed.
Third, the size restriction is removed because the ending
address of a region can be directly specified in the Limit
address. All of these improvements lead to more efficient usage
of the system memory. A requested memory region that had
to be pieced together by several smaller hardware regions can

now be directly configured with only one hardware region.
Naturally, legacy features that were designed for efficient usage
of system memory, such as the sub-region mechanism and the
overlapped region, have been abandoned.

III. MPU USAGE IN THE WILD

Taking advantage of the MPU, MCU-based embedded
systems can implement several memory-related security fea-
tures, such as isolating critical services from untrusted code
or detecting memory errors. To understand how MPUs are
used in real MCU products, we performed a comprehensive
survey, covering 30 top IoT operating systems (OSs) [34].
Some OSs (e.g., VxWorks) support both MCUs and traditional
processors. We only consider their MCU variants. Some OSs
(e.g., Windows 10 IoT) only support traditional processors. We
did not include them in the table. Due to diverse terminologies
of the same security feature used by IoT OSs, we summarize
six unified names to refer to these commonly supported
security features, which can be easily mapped to traditional
memory isolation features.

• Code Integrity Protection (CIP): Code regions can
be set as non-writable to prevent code injection and
manipulation.

• Data Execution Prevention (DEP): Data regions
like stack or heap can be set as non-executable to
prevent buffer overflow exploitation. CIP and DEP
map to WˆX [38] or executable-space protection [35]
in general computing platforms.

• Coarse-grained StackGuard (CSG): An inaccessible
memory hole is placed at the stack boundary to
detect stack overflows. Note that CSG can only detect
overflows to the entire stack region, not confusing with
traditional StackGuard to function-level stack frames.

• Kernel Memory Isolation (KMI): User mode (un-
privileged) code cannot access any memory belonging
to the kernel space without invoking system calls,
which is similar to the user space and kernel space
separation [37] in modern OSs.

• User Task Memory Isolation (TMI): User mode
(unprivileged) tasks can only access its own memory
except explicitly shared memory regions that belong
to other tasks or kernel, which is similar to the process
isolation [36] in modern modern OSs.

• Peripherals Isolation (PI): Peripheral access is re-
stricted to tasks that actually need it.

For each OS, we studied whether MPU is used and how
each of the six features is supported. In particular, a security
feature can be mandatory, optional or unsupported. An optional
feature can further be default-on or default-off with configu-
rations. For open-source OSs, we mainly relied on manual
review of the source code and documentation. Therefore, we
could get the most accurate and comprehensive results. For
propriety OSs, we can only resort to public resources such
as official and third-party websites. Interestingly, FreeRTOS
and embOS-MPU provides two separated versions with and
without MPU support, and we list them as two different OSs.
The results are summarized in Table I. In the following sections
and Appendix A, we use some case studies to explain the table.



TABLE I. SUMMARY OF MPU USAGE AND ADOPTION ON MCU OSS

MPU Usage
OS MPU Support CIP DEP KMI TMI CSG PI

Open-source

Contiki [11] None - - - - - -
LiteOS [15] None - - - - - -
RT-Thread [22] None - - - - - -
OpenWrt [20] None - - - - - -
TinyOS [5] None - - - - - -
Mongoose OS [17] None - - - - - -
FreeRTOS [8] None - - - - - -
FreeRTOS-MPU [7] Mandatory Mandatory Mandatory Mandatory Mandatory - -
RIoT [21] Optional Default-off - - - Default-off -
Apache Mynewt [2] None - - - - - -
Zephyr [27] Optional Default-on Default-on Default-off Default-off Default-off Default-off
MbedOS [9] Optional Default-on Default-on - - - -
TizenRT [24] Optional Default-off Default-off Default-off Default-off Default-off -
CMSIS-Keil RTX [6] Optional Default-off Default-off - Default-off - Default-off
Azure RTOS ThreadX [10] Optional Default-off Default-off Default-off - - -

Proprietary

Micrium OS [16] None ∅ ∅ ∅ ∅ ∅ ∅
Device OS [12] None ∅ ∅ ∅ ∅ ∅ ∅
VxWorks [26] None ∅ ∅ ∅ ∅ ∅ ∅
embOS [14] None ∅ ∅ ∅ ∅ ∅ ∅
embOS-MPU [13] Mandatory Mandatory ∅ Mandatory Mandatory ∅ ∅
NXP MQX RTOS [18] Optional Default-on ∅ Default-on Default-on ∅ ∅
Nucleus RTOS [19] Optional ∅ ∅ Default-on Default-on ∅ ∅
SafeRTOS [23] Mandatory Mandatory Mandatory Mandatory Mandatory ∅ ∅

-: Not supported at the time of submission. ∅: No public resource available to firmly decide.

A. Case Study: RIoT

When all the MPU related protections are enabled
(i.e., The macros of MODULE_MPU_NOEXEC_RAM and
MODULE_MPU_STACK_GUARD are set), RIoT enforces DEP
for the whole RAM and activates CSG using three MPU
memory regions.

DEP: RIoT enables the MPU region number 0 (recall that
lower number means lower priority) to cover the whole RAM
region (from 0x20000000 to 0x3fffffff) and set the per-
mission as readable/writable but non-executable. Then, code
sections are explicitly granted the execution privilege.

CSG: RIoT defines the permission of the last 32 bytes (the
smallest MPU region) of the main stack as read-only via the
MPU region number 1. Similarly, when switching to another
task, RIoT configures the last 32 bytes of the target task stack
as read-only via the MPU region number 1. With this 32-
byte memory hole, exhausting the stack memory will trigger
a MemManage fault.

B. Case Study: FreeRTOS-MPU

The basic FreeRTOS does not enable MPU. For the MPU-
enabled version, called FreeRTOS-MPU, we list the supported
security features in Table II.

CIP & DEP: The code sections are configured as read-only.
User task stacks and kernel data regions as configured as non-
executable. Accesses to unmapped regions trigger memory
faults.

KMI: The privileged kernel APIs are located in the first part
of the flash memory, which maps to the second MPU region.
It is set to be read-only in privileged mode, and inaccessible in
unprivileged mode. The kernel-maintained data (e.g., current
control block) are located in a separated MPU region in RAM
which is readable and writable in privileged mode. In addition,
to expose kernel APIs (e.g., vTaskDelay) to unprivileged

TABLE II. MEMORY MAP OF FREERTOS-MPU ON ARMV7-M

Region
No. Range Usage Privilege

Mode Permission

0 flash_segement_start
-flash_segemnt_end Non-writable Code Segment Privileged

Unprivileged
r-x
r-x

1 privileged_functions_start
-privileged_functions_end Kernel APIs Isolation Privileged

Unprivileged
r-x
∅

2 privileged_data_start
-privileged_data_end Kernel Data Isolation Privileged

Unprivileged
rw-
∅

3 0x40000000-0x5fffffff Non-executable Peripherals Privileged
Unprivileged

rw-
rw-

4 User Task Stack User Task Stack Isolation Privileged
Unprivileged

rw-
rw-

TABLE III. MEMORY MAP OF ZEPHYR ON ARMV7-M

Region
No. Range Usage Privilege

Mode Permission

0 Flash Region Non-writable Code Segment Privileged
Unprivileged

r-x
r-x

1 RAM Region Kernel Object Privileged
Unprivileged

rw-
∅

2 Task Stack Task Stack Isolation Privileged
Unprivileged

rw-
rw-

3 Last 32 Bytes on Stack Bottom Stack Guard Privileged
Unprivileged

r--
∅

tasks, FreeRTOS-MPU takes advantage of software interrupt
(i.e., SVC).

TMI: Tasks can be created to run in either privileged mode or
unprivileged (user) mode. A separated MPU region is reserved
for each user-mode task and is inaccessible for any other tasks.
By default, no memory is shared among user-mode tasks. To
share any data, the user-mode task should explicitly use the
queue or semaphore mechanisms provided by the kernel, which
consume up to three user-definable MPU regions.

C. Case Study: Zephyr

Zephyr is among IoT OSs that make heavy use of MPU.
It provides flexible protection based on users’ needs. We
summarize our findings in Table III.

CIP&DEP: The first MPU region maps to the flash memory
which stores program text and read-only data. It is configured



TABLE IV. MEMORY MAP OF TIZEN ON ARMV7-M

Region
No. Range Usage Privilege

Mode Permission

0 Common
Binary

Program Text Non-writable Code Segment Privileged
Unprivileged

r-x
r-x

1 Read-only Data Non-writable Data Segment Privileged
Unprivileged

r--
r--

2 Stack/Heap/Data Common Stack/Heap/Data Privileged
Unprivileged

rw-
rw-

3

Apps
Binary

Program Text Non-writable Code Segment Privileged
Unprivileged

r-x
r-x

4 Read-only Data Non-writable Data Segment Privileged
Unprivileged

r--
r--

5 Stack/Heap/Data App Stack/Heap/Data Privileged
Unprivileged

rw-
rw-

6 Last 32 Bytes on Stack Bottom Stack Guard Privileged
Unprivileged

r--
r--

7 User Task Stack User Task Stack Isolation Privileged
Unprivileged

rw-
rw-

as read-only for all access. The SRAM region and any thread
stack are non-executable. Accesses to unmapped regions trig-
ger memory faults.

KMI: Zephyr makes sure that all kernel objects in SRAM
(mapped in region #1) do not overlap with any user stacks
(mapped in region #2). User tasks must invoke system calls to
access kernel objects indirectly.

TMI&CSG: As mentioned before, Zephyr uses MPU region
#2 to map task-specific stacks. Also, similar to RIoT, the last
32 bytes of each task’s stack are mapped to MPU Region
#3, which is configured as read-only for privileged mode and
inaccessible for unprivileged mode. Therefore, during a task
switch, the corresponding MPU registers need to be updated
for the target task. With this mechanism, a task cannot access
others’ memory or exhaust its own allocated stack memory.
To add flexibility, a user task can use the memory domain to
gain access to additional memory. This memory region, which
is implemented by MPU, is inheritable and can be assigned to
multiple user or supervisor tasks.

PI: A peripheral driver instance is considered as a kernel
object. Therefore, its range is pre-configured to be inaccessible
by user tasks. To access peripherals, a user task must invoke
system calls.

D. Case Study: Tizen
All the MPU-enabled security features in Tizen are op-

tional. They can be activated by the following macros:
CONFIG_APP_BINARY_SEPARATION, CONFIG_OPTIMI
ZE_APP_RELOAD_TIME, CONFIG_SUPPORT_COMMON_B
INARY and CONFIG_MPU_STACK_OVERFLOW_PROTECTI
ON. When fully enabled, the achieved security features are
summarized in Table IV.

CIP&DEP: Tizen sets all the code, including user tasks in
apps binaries and common libraries as read-only. The data
regions of all tasks and common libraries are non-executable.
Unmapped memory regions is default region which is config-
ured to be accessible only in privileged mode.

KMI: The kernel resides in the default region, which can only
be accessed in privileged mode. The user tasks communicate
with the kernel via system calls.

TMI&CSG: Tizen enforces TMI&CSG protection using MPU
regions #7 and #6, similar to Zephyr. Besides, Tizen supports

dynamically loading application binaries into the systems. To
achieve TMI for them, MPU regions #3, #4 and #5 are used.

E. Case Study: Mbed OS

The Mbed OS is backed ARM, which complies with the
Platform Security Architecture (PSA), an ARM initiative for
security standard of IoT devices. However, due to hardware
restriction, not every piece of hardware can fully support PSA,
including the popular ARM-V7M devices. Due to the missing
parts, Mbed OS for ARM-V7M only supports CIP for ROM
and DEP for SRAM.

IV. COMMON PITFALLS IN USING MPU IN THE WILD

Although using MPU offers obvious security benefits, we
found that MPU does not receive wide adoption in the wild.
For example, although FreeRTOS provides a variant with
MPU port, AWS mainly uses the non-MPU version in its
products [3]. In this section, we shed light on the root cause
of this situation by discussing common pitfalls of using MPU
with real examples.

A. Weak Protection

While major IoT OSs adopt MPU to implement some
security features as discussed in Section III, we found that
these claimed features do not always fulfil their designed
benefits. In certain scenarios, they can be easily bypassed. We
discuss how an attacker can break KMI in FreeRTOS-MPU
and invalidate MPU features in RIoT.

FreeRTOS kernel APIs are located in a region that
can only be accessed in privileged mode. For compatibil-
ity, MPU-enabled FreeRTOS does not redesign its kernel
APIs to reflect MPU integration. Rather, it wraps the ex-
isting kernel APIs with the xPortRaisePrivilege and
vPortResetPrivilege, which raise and drop its privilege
temporarily for kernel function invocations respectively. For
example, as shown in listing 1 if a user mode task needs for
delay for a certain time, it has to invoke MPU_vTaskDelay
which uses the xPortRaisePrivilege function to switch
to privileged mode with SVC software interrupt before in-
voking the real FreeRTOS kernel function vTaskDelay.
On the completion of vTaskDelay, it needs to drop the
privilege by invoking vPortResetPrivilege. However,
since firmware binaries embed all the static compiled programs
as well as FreeRTOS kernel and system call APIs, the function
xPortRaisePrivilege can be easily located via reverse-
engineering. Once an attacker launches a control flow hijacking
attack (e.g., by exploiting a memory error) on any user mode
tasks, the hijacked task can escalate privilege via invoking
xPortRaisePrivilege, but never drop the privilege. With
the escalated privilege, the hijacked task can access any
resources on the device.

1 void MPU_vTaskDelay(TickType_t xTicksToDelay){
2 BaseType_t xRunningPrivileged =xPortRaisePrivilege();
3 vTaskDelay(xTicksToDelay);
4 vPortResetPrivilege(xRunningPrivileged);
5 }
6 BaseType_t xPortRaisePrivilege(void){
7 BaseType_t xRunningPrivileged;
8 xRunningPrivileged = portIS_PRIVILEGED();
9 /*If the CPU is not privileged, raise privilege.*/

10 if (xRunningPrivileged == pdFALSE){
11 portRAISE_PRIVILEGE();



12 }
13 return xRunningPrivileged;
14 }
15 #define portRAISE_PRIVILEGE() __asm volatile ("svc %0 \n"

::"i" (portSVC_RAISE_PRIVILEGE) : "memory");
16 void prvSVCHandler(uint32_t* pulParam){
17 ...
18 case portSVC_RAISE_PRIVILEGE:
19 if ((ulPC >= _syscalls_flash_start_) && (ulPC <=

_syscalls_flash_end_)){
20 __asm {
21 /*Obtain control value.*/
22 mrs ulReg, control
23 /*Set privilege bit.*/
24 bic ulReg, #1
25 /*Write back control value*/
26 msr control, ulReg
27 }
28 }
29 break;
30 ...
31 }

Listing 1. Kernel wrapper in FreeRTOS-MPU

To verify our observation, we built a firmware with
FreeRTOS-MPU. It has a stack overflow bug in a task. By
exploiting it, we overwrote the return address on the stack
with the address of the function xPortRaisePrivilege.
As a result, the executing privilege was escalated. Combining
more sophisticated ROP programming, we were able to run
arbitrary code with elevated privilege. Since all other MPU
protections like TMI and KMI are based on the privilege
separation, any privilege escalation attack will render these
security mechanisms useless.

On the other hand, some basic protections such as CIP,
DEP, and stack guard (SG) do not need to assign different
permissions for privileged and unprivileged modes. For exam-
ple, RIoT sets the permission as non-executable for the whole
RAM and read-only for stack guard range regardless of the
privilege mode, and it runs the entire firmware under privileged
mode. However, MPU control registers (e.g., MPU_CTRL)
are located in the system peripheral region, which can be
accessed by any privileged code. Even worse, systems often
provide easy-to-use driver APIs for MPU configurations (e.g.,
mpu_enable and mpu_disable in RIoT). This means
once an attacker is able to carry out a control flow hijacking
attack, they can directly invoke these functions to completely
disable MPU protections.

B. Incomplete Protection

As shown in Table I, only a few MCU OSs support MPU-
enabled security features, among which many are default-off.
Furthermore, due to the hardware limitation of MPU, we found
existing protections are too coarse-grained to be really useful
in real world.

First, most systems only focus on memory protection and
standard peripherals are not protected by default. Although
there may be a few remaining MPU regions that can be
configured individually by each user mode task, they are not
very suitable for protecting small peripheral regions scattered
in the address space due to the alignment problem and the
limited number of MPU regions, as mentioned in Section II.
For instance, the memory range for the Audio peripheral on
MPS2+ FPGA prototyping system broad (Cortex-M4 AN386)
is 0x40024000-0x40024FFF (16 Bytes).

Second, developers have the real-world need to assign
separate access rights to interrupt handlers [29]. However,
this is very challenging since ARM Nested Vector Interrupt
Controller (NVIC) registers for interrupt line configurations
are located in the system peripheral region, which can only be
accessed in privileged mode.

Furthermore, although the memory regions that are not
covered by MPU regions only allows privileged access, it en-
ables all access permissions including read, write, and execute,
which also has potential hazards. Assuming that an attacker
exploits a stack overflow in a task stack, they cannot execute
the malicious code in its stack due to MPU stack isolation.
However, they can put malicious code in these un-mapped
regions beforehand, and use a stack overflow attack to redirect
the control flow to malicious code in these regions.

MPUs cannot resist hardware attacks. For example, they
do not restrict peripherals as master, allowing them to access
all memory (e.g., via DMA). If the attacker is able to establish
access via JTAG or in the case of micro-probing, MPU cannot
help at all.

C. High Overhead

We also found leveraging MPU to realize kernel or task
memory isolation (KMI and TMI) incurs too much overhead
in many real-world application scenarios. This is because
each invocation to kernel API has to go through a full privi-
lege mode switch. Since kernel APIs are frequently invoked,
this poses a significant impact on real-time performance.
Our experiment shows that one thousand privilege switch of
FreeRTOS-MPU system takes 3.5ms in average on MPS2+
FPGA prototyping system broad (Cortex-M4 AN386) with
25MHZ CPU clock frequency. In a previous research [31],
a similar result was obtained. Such high overhead rules out
MPU’s application in many scenarios having strict real-time
constraints [31].

To realize TMI, the MPU regions need to be re-configured
for different tasks and applications. For example, Tizen has to
reset MPU regions #3-7 during the application switch and #6
and #7 during the task switch, which will also cause delays.

D. Conflicting with Existing System Design

To integrate MPU-based protection, some existing mech-
anisms have to be re-designed or even become incompatible.
For example, user mode tasks of FreeRTOS-MPU cannot use
dynamic queues because there is no shared memory between
any two tasks as we mentioned in Section III. To overcome
this, a task has to allocate memory statically and shares it with
the peers by configuring an MPU region. Note that each peer
needs the same MPU region for each queue. This applies to
semaphores too, which is a special kind of queue (queue length
is one). If a task needs multiple queues/semaphores or anther
additional memory regions (e.g., a task may also need to write
USB data to a DMA-mapped buffer in RAM), MPU resources
would soon become exhausted. Similarly, Zephyr and Tizen
also suffer from the same issue.

E. Fragmented Programming Interface

Other than the standard MPU offered by ARM, chip
vendors tend to design proprietary MPUs to distinguish them



from others. The customized MPUs—while mostly providing
better security guarantees—impose a steep learning curve for
developers and may discourage them from adopting MPUs or
even lead to programming errors. For example, many of NXP’s
Kinetis series MCUs discard ARM MPU and integrate NXP’s
proprietary MPU called sysMPU, Compared to ARM MPUs
which can only restrict the permission of CPU, sysMPU can
restrict the permission of every memory reference generated
by each bus master including peripherals. However, in our ex-
periments, when sysMPU is enabled, by default, all peripherals
cannot directly access RAM (i.e., via DMA) and this causes
firmware hangs in many cases. To properly use it, developers
have to correctly configure sysMPU, which requires a deep
knowledge of sysMPU design. More likely, when developers
face difficulties, they may simply give up and disable sysMPU
as we have witnessed in many NXP demos.

Summary: IoT devices are low-cost energy-efficient devices.
If more transistors are reserved for complex hardware security
features, not only the price of SoC could be raised accord-
ingly, but also increased power consumption rules out many
applications in which thermal design power (TDP) concerns.
Due to the reasons discussed earlier and many complaints
we found in developer forums (e.g., [30]), only 30% of
manufacturers implement one or more MCU security features
in their products [1].

V. SUGGESTIONS

A. Minimizing Pitfalls

Developers can raise the bar to bypass MPU protec-
tions for attacker by following the suggestions below. As is
demonstrated in Section IV-A, inappropriate implementation of
system calls can be leveraged by attackers to break KMI. Thus,
developers should pay more attention to functions involved
in privilege escalations like system calls. To be specific,
additional caller checks should be performed before system
call invocations, and the kernel should make sure the privilege
is dropped after system calls. Besides, some MPU-enable
OSs just run the whole system at the privileged mode like
RIoT. Therefore, a single vulnerability could grant attacker
the capability to reconfigure MPUs, thereby disabling the
desired security features. We recommend to drop privilege
immediately after MPU configuration.

The ARMv7 architecture allows MPU regions to overlap,
and higher-numbered regions always have precedence. Thus,
during a task switching, in addition to re-configuring the MPU
regions, system should make sure that unused MPU regions are
disabled. It can prevent leaking permission from the previous
task to the next one.

B. Region Usage Optimization

A limitation with MPU is that only a few number of
regions are supported (e.g., only eight regions for Cortex-
M0+/M3/M4). Creatively using the sub-region disable field
(SRD) of BASR can overcome this limitation to some extent.
As mentioned in Section II, each memory region can be
divided into eight sub-regions, which can be enabled/disabled
individually. Suppose a developer needs to allocate a 5KB
region and a 3KB region for two tasks. Without sub-regions,
the developer has to configure two regions of 8KB and 4KB

separately. There is a waste of 3KB and 1KB of memory space
correspondingly. With sub-regions, the same 8KB region can
be shared between the two tasks. Specifically, when running
task one, MPU is configured so that the highest three sub-
regions of the 8KB region are disabled. When running task
two, MPU is configured so that the lowest two sub-regions of
the 8KB region are disabled. In this way, the 8KB memory
block is reused by the two tasks without wasting any memory.

The default ARMv7-M address map [25] defines the default
memory access permissions and attributes of memory regions
when MPU is not present. Therefore, it can be used to reduce
MPU region consumption. Specifically, the IACCVIOL field
of Memory Management Fault Status Register (MMFSR) indi-
cates whether an Execute Never (XN) fault has been triggered
when memory access violates the permissions of the default
memory map (e.g., non-executable for standard and system
peripheral regions). If we can leverage this feature to set XN,
an MPU region can be saved.

Compiler-based approaches can intelligently figure out an
optimized MPU configuration for certain tasks [31], [28].
For example, MINION [31] uses k-means clustering to group
memory sections having similar access permissions together
to minimize the number of required MPU regions.

C. New Hardware Features

Although ARMv8-M provides a more powerful MPU de-
sign, it cannot solve all the problems. In the long term, we
expect a redesigned architecture that fundamentally addresses
the illustrated insecurity and inflexibility in a lightweight
way. Along this direction, hardware-based solutions have
been proposed [32], [33]. The most representative work is
TrustLite[32]. It is a radical hardware redesign that efficiently
implements many novel security primitives (e.g., execution-
aware MPU, secure loader) for embedded devices. In ad-
dition, the ARMv8-M architecture has extended TrustZone
technology to Cortex-M series processors, allowing for TEE
to be deployed in MCUs. For example, Mbed OS already
implemented PSA which provides the root-of-trust service and
infrastructure for developing secure IoT applications.

VI. CONCLUSION

In this work, we investigate the MPU usage of popular
cyber-physical systems in the wild. To our surprise, we found
that MPU as a ready-to-use security feature for protecting
microcontroller is rarely used in real-world products. We
studied the source code of MCU OSs in an attempt to find
explanations for this situation and eventually identified four
reasons. Unfortunately, some of them are fundamental and not
remedial in a short term. We give recommendations for better
use of MPU and hope our findings can inspire research on
novel usage of MPU and new hardware retrofitting for MCUs.

ACKNOWLEDGMENT

We thank all the anonymous reviewers for their
constructive comments. This work is supported by the
National Natural Science Foundation of China (Grant
No.62202188), The National Key R&D Program of China
(Grant No.2022YFB31033400), and Cisco Research.



REFERENCES

[1] “2019 Embedded Markets Study,” https://www.embedded.com/wp-c
ontent/uploads/2019/11/EETimes_Embedded_2019_Embedded_Marke
ts_Study.pdf, 2019.

[2] “Apache Mynewt,” https://github.com/apache/mynewt-core, 2020.
[3] “FreeRTOS AWS Reference Integrations,” https://github.com/aws/ama

zon-freertos, 2020.
[4] “Memory management unit,” https://en.wikipedia.org/wiki/Memory_m

anagement_unit, 2020.
[5] “TinyOS,” https://github.com/tinyos/tinyos-main, 2020.
[6] “CMSIS-Zone,” https://www.keil.com/pack/doc/CMSIS/Zone/html/in

dex.html, 2021.
[7] “FreeRTOS: Memory Protection Unit (MPU) Support,” https://www.fr

eertos.org/FreeRTOS-MPU-memory-protection-unit.html, 2021.
[8] “FreeRTOS: Real-time operating system for microcontrollers,” https:

//www.freertos.org/, 2021.
[9] “Mbed: Rapid IoT device development,” https://os.mbed.com/, 2021.

[10] “Azure RTOS ThreadX,” https://github.com/azure-rtos/threadx, 2022.
[11] “Contiki: The Open Source Operating System for the Internet of

Things,” http://www.contiki-os.org/, 2022.
[12] “Device OS,” https://docs.particle.io/getting-started/device-os/introduc

tion-to-device-os/, 2022.
[13] “embOS-MPU — Comprehensive memory protection,”

https://www.segger.com/products/rtos/embos/editions/embos-mpu/e
mbos-mpu-basic-concepts/, 2022.

[14] “embOS – The Leading RTOS (Real Time Operating System),” https:
//www.segger.com/products/rtos/embos/, 2022.

[15] “Huawei LiteOS,” https://github.com/LiteOS/LiteOS, 2022.
[16] “Micrium OS,” https://www.silabs.com/developers/micrium-os, 2022.
[17] “Mongoose OS,” https://mongoose-os.com/, 2022.
[18] “MQX Software Solutions,” https://www.nxp.com/design/software/em

bedded-software/mqx-software-solutions:MQX_HOME, 2022.
[19] “Nucleus RTOS,” https://www.mentor.com/embedded-software/nucleu

s/, 2022.
[20] “OpenWrt,” https://openwrt.org/start, 2022.
[21] “RIoT,” https://github.com/RIOT-OS/RIOT, 2022.
[22] “RT-Thread,” https://www.rt-thread.org/, 2022.
[23] “SAFERTOS CORE Overview,” https://www.highintegritysystems.com

/safertos-core/, 2022.
[24] “Samsung TizenRT,” https://github.com/Samsung/TizenRT, 2022.
[25] “System address map,” https://developer.arm.com/documentation/dd

i0489/c/programmers-model/system-address-map, 2022, last accessed:
2022-05-01.

[26] “VXWORKS,” https://www.windriver.com/products/vxworks/, 2022.
[27] “Zephyr Project,” https://docs.zephyrproject.org/latest/introduction/ind

ex.html, 2022.
[28] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:

Automatic Compartments for Embedded Systems,” in 27th USENIX
Security, 2018.

[29] N. Community, “MPU advanced features?” https://community.nxp.co
m/message/1144517?commentID=1144517#comment-1144517, 2019.

[30] S. Community, “FAQ: Ethernet not working on STM32H7x3,”
https://community.st.com/s/article/FAQ-Ethernet-not-working-on-STM
32H7x3, 2018.

[31] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Se-
curing real-time microcontroller systems through customized memory
view switching,” in NDSS, 2018.

[32] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite:
A security architecture for tiny embedded devices,” in EuroSys, 2014.

[33] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE:
Hardware-Supported Call and Return Enforcement for Commercial
Microcontrollers,” in RAID. Springer, 2017.

[34] Slashdot., “Best Real-Time Operating Systems (RTOS) of 2023,” https:
//slashdot.org/software/iot-operating-systems/, 2023.

[35] Wikipedia, “Executable space protection,” https://en.wikipedia.org/wik
i/Executable_space_protection#Windows, 2022, last accessed: 2023-02-
01.

[36] Wikipedia, “Process isolation,” https://en.wikipedia.org/wiki/Process_
isolation, 2022, last accessed: 2023-02-01.

[37] Wikipedia, “User space and kernel space,” https://en.wikipedia.org/w
iki/User_space_and_kernel_space, 2022, last accessed: 2023-02-01.

[38] Wikipedia, “WˆX,” https://en.wikipedia.org/wiki/W%5EX, 2022, last
accessed: 2023-02-01.

APPENDIX

We detail more case studies of MPU usage in open-source
IoT OSs (summarized in Table I) as follows.

A. Case Study: Keil RTX

Keil RTX can leverage CMSIS-Zone [6] to isolate tasks and
peripherals from each other (i.e., TMI and PI are supported).
An important concept in RTX is execution zone, in which users
can configure the access permissions (i.e., readable, writable,
and executable) to a bundle of memory regions and peripherals
(i.e., CIP and DEP are also supported). This ensures that
even if a task stack is corrupted, the error cannot tamper with
the data and peripherals of other tasks. However, Keil RTX
does not offer isolation of normal user tasks and the kernel
(i.e., KMI is unsupported), so that code and data of the kernel
cannot be entirely opaque to user tasks.

B. Case Study: Azure RTOS ThreadX

Similar to Tizen, ThreadX is able to dynamically load
modules, and each module includes several tasks and can
be configured as an isolated part with others. However, the
isolation is only implemented at the module level, not the task
isolation. Therefore, TMI, PI and CSG are unsupported.

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://github.com/apache/mynewt-core
https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://github.com/tinyos/tinyos-main
https://www.keil.com/pack/doc/CMSIS/Zone/html/index.html
https://www.keil.com/pack/doc/CMSIS/Zone/html/index.html
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.freertos.org/
https://www.freertos.org/
https://os.mbed.com/
https://github.com/azure-rtos/threadx
http://www.contiki-os.org/
https://docs.particle.io/getting-started/device-os/introduction-to-device-os/
https://docs.particle.io/getting-started/device-os/introduction-to-device-os/
https://www.segger.com/products/rtos/embos/editions/embos-mpu/embos-mpu-basic-concepts/
https://www.segger.com/products/rtos/embos/editions/embos-mpu/embos-mpu-basic-concepts/
https://www.segger.com/products/rtos/embos/editions/embos-mpu/embos-mpu-basic-concepts/
https://www.segger.com/products/rtos/embos/
https://www.segger.com/products/rtos/embos/
https://github.com/LiteOS/LiteOS
https://www.silabs.com/developers/micrium-os
https://mongoose-os.com/
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions:MQX_HOME
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions:MQX_HOME
https://www.mentor.com/embedded-software/nucleus/
https://www.mentor.com/embedded-software/nucleus/
https://openwrt.org/start
https://github.com/RIOT-OS/RIOT
https://www.rt-thread.org/
https://www.highintegritysystems.com/safertos-core/
https://www.highintegritysystems.com/safertos-core/
https://github.com/Samsung/TizenRT
https://developer.arm.com/documentation/ddi0489/c/programmers-model/system-address-map
https://developer.arm.com/documentation/ddi0489/c/programmers-model/system-address-map
https://www.windriver.com/products/vxworks/
https://docs.zephyrproject.org/latest/introduction/index.html
https://docs.zephyrproject.org/latest/introduction/index.html
https://community.nxp.com/message/1144517?commentID=1144517#comment-1144517
https://community.nxp.com/message/1144517?commentID=1144517#comment-1144517
https://community.st.com/s/article/FAQ-Ethernet-not-working-on-STM32H7x3
https://community.st.com/s/article/FAQ-Ethernet-not-working-on-STM32H7x3
https://community.st.com/s/article/FAQ-Ethernet-not-working-on-STM32H7x3
https://slashdot.org/software/iot-operating-systems/
https://slashdot.org/software/iot-operating-systems/
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://en.wikipedia.org/wiki/Process_isolation
https://en.wikipedia.org/wiki/Process_isolation
https://en.wikipedia.org/wiki/User_space_and_kernel_space
https://en.wikipedia.org/wiki/User_space_and_kernel_space
https://en.wikipedia.org/wiki/W%5EX

	Introduction
	Background
	What Can MPUs Do?
	How to Program MPUs?

	MPU Usage in the wild
	Case Study: RIoT
	Case Study: FreeRTOS-MPU
	Case Study: Zephyr
	Case Study: Tizen
	Case Study: Mbed OS

	Common Pitfalls in Using MPU in the Wild
	Weak Protection
	Incomplete Protection
	High Overhead
	Conflicting with Existing System Design
	Fragmented Programming Interface

	Suggestions
	Minimizing Pitfalls
	Region Usage Optimization
	New Hardware Features

	Conclusion
	References
	Appendix
	Case Study: Keil RTX
	Case Study: Azure RTOS ThreadX


