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Abstract—Blaze is an open-source binary analysis framework
that supports the construction and manipulation of interproce-
dural control-flow graphs (ICFGs) and type checking on a lifted
representation of program binaries. All analyses in Blaze are
implemented in terms of a typed intermediate language—Path
Intermediate Language (PIL). Blaze includes a unification-based
type checker for PIL which is used to support the generation
of SMT formulas and type inference. Blaze has been used to
develop tools for reverse engineering and vulnerability discovery
and provides a foundation for exploring the use of type systems
and higher-level abstractions in the analysis of program binaries.
This paper provides an overview of Blaze’s implementation,
capabilities, and applications.

I. INTRODUCTION

Manual reverse engineering is an often necessary step in
the process of understanding vulnerabilities in program bina-
ries, even as advances in automated binary analysis continue
to be made. The tools available to reverse engineers can
be improved by adding support for semi-automated analysis
workflows which provide opportunities for reverse engineers
to inform and direct automated analyses. We have developed a
framework for interprocedural binary analysis—Blaze—which
supports this goal of human-computer collaboration.

Blaze is a static analysis framework for program binaries
that operates on interprocedural control-flow graphs (ICFGs),
which are well-suited for presentation to—and interaction
with—reverse engineers. While similar to the control-flow
graphs (CFGs) [1] used in many binary analysis and reverse
engineering tools, the basic blocks in Blaze ICFGs are defined
such that all call sites are placed in separate basic block
nodes known as call nodes. Call nodes may be expanded by
substituting the CFG of a call target function in place of the
call node. For indirect calls, which may have many possible
target functions, Blaze supports user-specified targets for the
expansion.
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ICFGs in Blaze assist with reverse engineering tasks in two
ways. First, considering a function’s CFG within a specific
calling context may provide information that can be used
to simplify that CFG by identifying and removing infeasible
paths through constraint-driven transformations. This manual
task, frequently performed by vulnerability researchers when
investigating potential vulnerabilities, is automated by Blaze.

Second, reverse engineers frequently cycle between vi-
sualizations of function CFGs related to the current portion
of the program they are reviewing as they form and test
hypotheses of program functionality. Blaze ICFGs provide a
single workspace for analyzing all of the connected, individual
function CFGs. Additionally, ICFG snapshots can be created,
which allows reverse engineers to explore the binary through
modification of an ICFG and later revert to an earlier version.
A user interface for this functionality is provided through a
Blaze plugin for Binary Ninja.

Blaze imports basic program information from several
established external code representations: Binary Ninja’s
Medium-Level Intermediate Language (BN MLIL) [33] and
Ghidra’s P-Code and High P-Code representations [25]. Those
external formats are lifted into Blaze’s intermediate language,
Path Intermediate Language (PIL), which provides a common
target representation for importing as well as for the imple-
mentation of analysis algorithms in Blaze.

Blaze defines a type system for PIL which is used to
assist in the translation of PIL statements to satisfiability
modulo theories (SMT) formulas [12] for reasoning about
program constraints recovered from ICFGs. A unification-
based type checker is provided that performs type inference
and assigns types to PIL expressions. In addition to supporting
the generation of SMT formulas, inferred PIL types are directly
useful for reverse engineering in describing the sorts of values
a variable may represent.

The main contributions of this paper are:

• The introduction of an open-source, static analysis
framework—Blaze—that is focused on the analysis of
program binaries through interprocedural analyses and
type checking.

• A detailed overview of the framework implementation,
including its architecture, integration with existing reverse
engineering tools, intermediate representation, type sys-
tem, and constraint-driven transformations on interproce-
dural control-flow graphs (ICFGs).

• A presentation of several applications of Blaze for reverse
engineering tasks, including interactive modification of
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ICFGs and type inference.

Blaze is an actively-developed, open-source project1 used
to support semi-automated binary analysis and the develop-
ment of reverse engineering tools. All Blaze tools used in this
paper will be made publicly available at: https://github.com/
kudu-dynamics.

II. RELATED WORK

Binary analysis frameworks provide a set of consistent
APIs and analyses for performing program analysis on binary
images. Many of these frameworks support common capa-
bilities such as instruction disassembly, control-flow graph
recovery, and data-flow analysis. Some frameworks provide ad-
ditional capabilities, such as symbolic execution, path analysis,
and type recovery, which are related to Blaze’s characteristic
features.

Symbolic execution [7], [17] is a popular technique for
modeling the execution of a program by using symbolic
values instead of concrete values. Individual instructions are
interpreted by a symbolic execution engine and introduce
constraints on symbolic values. An SMT solver is used to
check these constraints and may either provide a satisfiable
interpretation which includes assignments of concrete values to
symbols, or an indication that the constraints are unsatisfiable.
Symbolic execution is frequently used to find program inputs
which lead to a certain execution path. angr [30], BAP [5],
BINSEC [11], and Miasm2 [13] are binary analysis frame-
works which include symbolic execution engines. KLEE [6]
(when used with McSema [15]), Manticore [24], S2E [8], and
SAGE [17] are all standalone symbolic execution engines with
support for program binaries.

While not a binary analysis framework or symbolic exe-
cution engine, SENinja [4] is a tool which integrates angr’s
symbolic execution engine with Binary Ninja’s graphical user
interface [33]. This integration is similar to that provided by
the Blaze plugin for Binary Ninja.

Blaze does not perform symbolic execution, but it does
use symbolic constraints recovered from branch conditions
and static single assignment (SSA) variables to automatically
simplify interprocedural control-flow graphs through a context-
and path-sensitive analysis. In contrast to symbolic execution,
individual instructions or statements are not interpreted, and
the goal is to assist a user in focusing on the relevant portions
of a program given their current assumptions.

Pharos [29] and its Java implementation—Kaiju [34]—use
interprocedural analyses similarly to Blaze. Kaiju has been
used to implement the GhiHorn [16] tool which is capable
of determining the feasibility of a path through a program.
While GhiHorn and Blaze both use SMT solvers to check
path feasibility, Blaze supports an interactive construction
and modification of interprocedural control-flow graphs which
allows a gradual refinement of the program to a set of feasible
paths. In contrast, GhiHorn provides an ability to search for a
specific path matching a user-provided query.

There is existing work in type recovery from program
binaries for the purposes of program variable recovery [2],

1https://github.com/kudu-dynamics/blaze

[20] and decompilation [9]. The binary analysis frameworks
angr [30], BAP [5], BinCAT [3], CodeSurfer/x86 [26], and
REV.NG [14] perform type recovery as a part of one or both
of these tasks. In program variable recovery, algorithms have
been proposed to group related abstract locations [2] used
to store program variables and then infer both the presence
of a unique program variable and the associated type which
approximates the program variables found in the source code
for the program. There has also been work on type recovery
apart from any particular binary analysis framework. These
techniques include static [35], [2] and dynamic [31], [22]
approaches.

Similarly, decompilation includes the recovery of source
program variables and their types as part of the more gen-
eral task of reproducing source code that corresponds to the
program binary. Type recovery aims to assign types from the
source programming language to recovered program variables.
In contrast, Blaze’s PIL has its own type system, and Blaze
provides a unification-based type checker that directly infers
types for PIL terms. PIL types are sufficiently expressive to
avoid ambiguities found in the type system of source languages
such as C.

III. INTERPROCEDURAL BINARY ANALYSIS

A. Framework Overview

Blaze is a binary analysis framework that provides control-
and data-flow analyses, constraint modeling, an interprocedural
program representation, and transformations on that represen-
tation. Blaze is implemented in Haskell and integrates with
two popular reverse engineering platforms, Binary Ninja and
Ghidra. PIL is Blaze’s intermediate language for analysis
and is used as a common representation for Binary Ninja’s
MLIL and Ghidra’s P-Code and High P-Code. Interprocedural
analysis in Blaze is performed on ICFGs which contain PIL
statements. These graphs are similar to standard CFGs but
permit the substitution of function calls with the control-flow
graphs of the call target.

The Blaze framework is organized into multiple compo-
nents that provide capabilities such as importing of program
information, graph analyses, PIL analyses, constraint model-
ing, and type checking, as shown in Figure 1. The Importer
component includes abstract interface definitions as Haskell
type classes for importing function control-flow graphs, call
graphs, and PIL instructions. Support for importing from both
Binary Ninja and Ghidra is included with Blaze, but the design
of the Importer allows Blaze users to add support for other
sources of program information.

The PIL Analysis component includes support for analyz-
ing and rewriting PIL statements. Specifically, this component
provides data dependence analysis, copy propagation, constant
propagation, and simplifying rewrites for various PIL expres-
sions based on analysis results.

The Type Checker component defines a type system for
PIL and implements a unification-based type checking and
inference algorithm. Blaze can propagate type information
within an ICFG, infer PIL types, and utilize type annotations
for known functions.
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Fig. 1. Architecture of the Blaze framework and related external components.

Blaze’s Graph Analysis component provides standard anal-
yses for control-flow graphs as well as support for the con-
struction and manipulation of ICFGs. The Constraint Model-
ing component converts ICFGs and PIL statements to SMT
formulas and is used by the Graph Analysis component to
automatically simplify ICFGs.

We developed a Blaze Analysis Server that provides access
to Blaze capabilities and a Blaze Analysis Graphical User
Interface as a Binary Ninja plugin that communicates with
the server and allows users to construct and transform ICFGs
within Binary Ninja. The Server also provides the ability to
persist and load snapshots of ICFGs.

Some details of these components are discussed in the
following subsections under Section III.

B. PIL and ICFGs

PIL includes over 90 operations and 20 types of statements,
and we present an abbreviated grammar in Figure 2. Note
that some PIL terms rendered by the Blaze plugin have a
slightly different surface syntax. Memory store operations and
all operations that affect control flow—calling a procedure,
returning from a called procedure, and jumping—are made
explicit at the statement level. PIL expressions include integer,
floating point, boolean, and pointer constants, as well as
composite expressions made from fixed-arity operations.

Though not a part of this presentation of the PIL syntax,
each abstract syntax tree (AST) node within an expression can
be annotated with a PIL type as described in Section III-C.
As Blaze is implemented in Haskell, this is accomplished
without adding complexity to the core syntax through the use
of the data types à la carte technique [32]. In fact, using this
approach, all the nodes of a PIL AST can be annotated with
any kind of data.

Blaze control-flow graphs are flow graphs—rooted, di-
rected graphs—containing basic block nodes and function call
nodes. PIL statements in Blaze CFGs are in static single
assignment (SSA) form. Basic block nodes contain a linear
sequence of PIL statements, and function call nodes contain a
single PIL call statement. Each CFG corresponds to a single
function. Basic blocks always have at least one statement; their

Statements σ ::=
x := e Assignment
| x := ϕ(x⃗) Phi assignment
| e1 ← e2 Memory store
| CALL f (e⃗ ) | RET e Procedure call, return
| JUMP e | IF e Indirect jump, conditional branch
| JUMPTO e1 (e⃗ ) Switch statement

Expressions e, P,Q ::=
ni | nf | b | p Integer, float, bool, pointer constants
| x Variables
| &x Addresses of stack locals and parameters
| e1 ⊕ e2 Binary operations
| ⌈e⌉ | ⌊e⌋ Float truncation
| ¬e Bitwise logic
| [e] Memory load

Binary operators ⊕ ::=
+i | −i | ∗i | ÷s | ÷u Integer arithmetic
|+f | −f | ∗f | ÷f Float arithmetic
|≫a | ≫l | ≪ Bit-shifting
|=i | ̸=i | =f | ̸=f Integer, float equality
|<s | ≤s | >s | ≥s Signed integer comparison
|<u | ≤u | >u | ≥u Unsigned integer comparison
|<f | ≤f | >f | ≥f Float comparison
|AND | OR | XOR Bitwise logic

Fig. 2. Abbreviated grammar for PIL statements and expressions.

final statement may be a conditional branch, indirect jump, or
switch statement. CFG nodes are connected by control-flow
edges, and if a node has no out-edges, then it is considered
a terminal node in the CFG. Otherwise, a node will either
lead unconditionally to a single successor node or will branch
to two or more successor nodes. In the case of a conditional
branch, each out-edge is labeled with either True or False,
indicating in which case that edge will be followed.

While CFGs only contain basic block nodes and function
call nodes, interprocedural CFGs can also contain enter nodes
and leave nodes. Each enter and leave node represents a change
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(a) Before. A conditional edge has been
selected by the user to be pruned; nodes
that will be removed after carrying out the
operation are highlighted in red, and edges
to be removed are dotted.

(b) The ICFG after the prune
operation is completed.

Fig. 3. A demonstration of the prune operation.

of context between a caller and callee. An enter node represents
switching from a caller’s context to its callee’s context, and
includes assignment statements that link the caller’s call site
arguments to the callee’s function parameters. A leave node
represents returning back to a caller’s context and includes an
assignment statement that captures the callee’s return value.

Blaze implements a number of transformations on ICFGs
that can be directed either by a user or by an automated
analysis:

Call-node expansion A function call node can be expanded,
which replaces the function call node with the CFG of the
callee. At the boundary between the caller and callee, two
new nodes are inserted: an enter node and a leave node.
The subgraphs of expanded call nodes may introduce new
call sites which the user may also expand. The user can
expand recursive and mutually-recursive procedures an
arbitrary number of times.

Conditional edge pruning Conditional edges can be selected
by the user to be pruned. The edge will be removed,
and any blocks which become unreachable as a result
will also be removed. Figure 3 shows the result of
pruning a conditional edge. If an ICFG is thought of as
a compact representation of all paths through a region of
the program being analyzed, then pruning removes any
path that includes the targeted edge.

Node focusing While pruning removes any path that includes
a specific edge, focusing removes any path which excludes
a specific node. When the user focuses on a node, Blaze
will remove all nodes except those which are either
reachable from the focused node or can reach the focused
node. In other words, focusing removes any nodes which
do not coexist with the focused node on any path through
the ICFG. Focusing allows the user to mark a node of

(a) Before. The left-most successor of the switch statement block has been
selected by the user to be focused on; nodes that will be removed are
highlighted in red, and edges to be removed are dotted.

(b) The CFG after the focus operation is completed. All immediate successors
of the switch statement block (except for the focused block) have been
removed, and the switch statement has been simplified.

Fig. 4. A demonstration of the focus operation.

interest and remove all paths in the ICFG which do not
include the focused node. Figure 4 shows an example of
focusing on a node.

Node grouping Certain subgraphs—called groups—within an
ICFG can be collapsed into a compact grouping node.
Intuitively, a group is a subgraph where all nodes are
only connected to other nodes in the group except for a
start node and an end node. The start node may have in-
edges whose source node is not a member of the group,
and the end node may have out-edges whose destination
node is not a member of the group. These are analogous
to the requirements that are imposed on basic blocks:
there must be no stray control-flow edges into or out of
the group except at its start and end. After replacing the
group with a grouping node, any in-edges to the start
node and out-edges from the end node are redirected to
the new grouping node. This grouping node contains the
original group which can can be restored by expanding
the grouping node.
Blaze identifies candidate end nodes which are dominated
by the start node and post-dominate all group nodes. Fig-
ure 5 shows an example of grouping and the identification
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(a) Before. The user has se-
lected the first block as the
group start node. Blaze high-
lights candidate end nodes in
blue. Note that the two call
nodes are not candidate end
nodes because the preceding
node at 0x10 would then have
a stray out-edge.

(b) After the user selects the node at 0x10
as the group end node, Blaze collapses the
group containing the first, second, and third
nodes into a grouping node, which displays
a summary of the group it contains. The
out-edges from the end node are replaced
with out-edges from the grouping node.

Fig. 5. A demonstration of the group operation.

of possible end nodes.

C. Type Checking

We designed a type system for PIL and implemented a type
checker for it in Blaze. A goal of the PIL type system is to
provide types for the program as lifted from the binary that
are more expressive than those available in the original source
language and assist in reverse engineering. We hope this may
ultimately lead to type checking as automated vulnerability
discovery.

The PIL type checker produces an assignment of types to
PIL expressions. The type checker is typically used to check
the PIL statements associated with an ICFG, but any collection
of statements can be provided as input. Blaze’s type checker
uses unification—a common approach for type checking in
functional programming languages [19], [23], [21]—to resolve
type constraints and find appropriate substitutions. Type infer-
ence occurs as unifying substitutions are selected based on the
constraints provided by the PIL statements being checked. The
type checker is used for three capabilities in Blaze: 1) inference
and assignment of types to expressions; 2) conversion of PIL
statements to SMT formulas; and 3) checking for type errors.

The PIL types and type constructors are listed in Table I
and provide ways to represent common values that occur in
programs. Type constructors refer to partially-defined types
and are used to distinguish a set of possible types, Int w
s, from a concrete type such as Int 32 Signed. The w
and s symbols in Int w s denote metavariables which may
be replaced with a concrete value that provide information
about the bit-width and signedness. Support for C structs, C++
classes, and general data structures can be implemented in
terms of the Record m and Array n T type constructors.

Record types have an associated map that describes the
fields associated with the type. The map keys are field offsets

Bool

Char w

Int w sFloat w

BitVec w

CString n

Array n T

Record m

()

⊥

Function R [P]

Pointer w T

⊤

Fig. 6. The type lattice depicting the subtyping relation for PIL types.
Metavariables are used as placeholders to reduce the visual complexity from
instantiating possible types.

Int ? Signed

Int ? ?

Int 32 ?Int 8 ? Int ? Unsigned… Int 128 ?…

w known s known

Int 32 SignedInt 32 Unsigned

.

.

.

.

.

.

.

.

.

.

.

.

w and s known

Fig. 7. An expanded view of the Int w s type constructor and the subtypes
defined by adding information about the bit-width and signedness of an integer.
Unknown values are represented with ?.

expressed in bits. For example, a record type for a two-
dimensional point may be denoted as: Record {0: Float
32, 32: Float 32} and may correspond to a C struct,
such as: struct {float x; float y;};.

The type lattice for PIL types is shown in Figure 6 and
depicts the subtype relation between the available types. In
Figure 7, an expanded view of the Int w s type construc-
tor is shown with the bit-width w and signedness flag s
metavariables instantiated with concrete values. This figure
shows how the incorporation of additional information about
a type is captured through subtyping. We use ? to denote
unknown values. As information is added, unification between
various integer types becomes infeasible. For example, the
types in the constraint (Int 32 ?) = (Int ? Signed)
will unify to Int 32 Signed, but the types in the constraint
(Int 32 ?) = (Int 8 ?) cannot unify because neither
type is a subtype of the other.

Similarly, not all instantiations of Int w s are subtypes
of all instantiations of BitVec w. Consider a bit vector with a
known bit-width of 32, BitVec 32; only 32-bit integers are
subtypes and will unify with it. An example of the subtype

BitVec ?

BitVec 8 BitVec 32 Int ? ?

Int 32 ?Int 8 ?

Fig. 8. The subtype relationship between several instantiations of the BitVec
w and Int w s type constructors.
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TABLE I. THE TYPES AND TYPE CONSTRUCTORS AVAILABLE IN THE PIL TYPE SYSTEM. SINGLE-LETTER METAVARIABLES ARE USED AS
PLACEHOLDERS FOR UNSPECIFIED VALUES (LOWERCASE) AND TYPES (UPPERCASE).

Name Description
BitVec w Bit vector types specified by bit-width w.
Int w s Integer types specified by bit-width w and signedness flag s.
Pointer w T Pointer types specified by the pointer bit-width w and pointee type T.
Float w Float types specified by bit-width w.
Char w Character types specified by bit-width w.
Bool The Boolean type.
Record m Record types specified by a map m of field offsets to field types.
Array n T Array types specified by a length n and element type T.
CString n Null-terminated sequence of Char 8 values specified by length n.
Function R [P] Function types specified by return type R and variable number of parameter types [P].
() The Unit type inhabited by the single value ().
⊤, ⊥ The Top and Bottom types.

relation between instantiated types is provided in Figure 8.

There are two distinct phases in a unification approach for
type checking and type inference. In the first phase, Blaze
traverses all the PIL statements and expressions in an ICFG
and generates unification variables for PIL terms, such as PIL
variables, constants, and other expressions. These unification
variables are assigned type constraints. Blaze’s type checker
uses two types of constraints: type-equality constraints and
subtype constraints. The type-equality constraints state that
the types assigned to two unification variables must match—
or unify—with each other. As an example, a type-equality
constraint between two unification variables would be added
to the PIL variables in an assignment statement. The statement
x := y assigning the value of PIL variable y to PIL variable
x would introduce the constraint that the type of x and the
type of y must be the same: x:T1, y:T2, T1 = T2, where
T1 and T2 are unification variables.

Additionally, Blaze supports subtype constraints that are
added to unification variables based on uses of the related PIL
term. For example, the +i operator represents integer addition
and x+i 1 implies that x is an integer. Let us assume that the
bit-width size of x is 32 bits. Given the use of x in this addition
operation and its known size, Blaze will add the subtype
constraint x <: (Int 32 ?). Note that the signedness flag
cannot be inferred from this expression as indicated by ?.

A subtype relation is reflexive; thus this subtype constraint
asserts x must be an Int 32 ? or another more-specific
subtype. Once these type constraints have been generated,
Blaze then attempts to find the most general type assign-
ments that meet those constraints. While solving for these
constraints, Blaze is performing type checking in addition to
type inference. If no valid type assignment is possible given
a set of constraints then Blaze will report a type error for the
constraints that could not be met.

We implemented a standard unification algorithm for Blaze
to resolve the type constraints. Constraints are stored in a
list and unified one at a time. Additional constraints may
be introduced during unification and are added to the list
of constraints. For example, resolving a constraint between
two pointer types Pointer 64 T1 = Pointer 64 T2

introduces a constraint, T1 = T2, between the pointee types’
unification variables.

Once all constraints have been processed, every PIL term is
associated with a PIL type. If a constraint cannot be resolved
because no valid substitution is possible, then the ⊥ (Bottom)
type is assigned and a type error is reported. The results
of type checking—type assignments, errors, and other related
information—are provided as a result.

D. Constraint-Driven Transformations

Root
If (P)

NodeA NodeB

Term

False
(¬P)

True
(P)

A
if (P)

{} 

B

{¬P} 

C

{P} 

D

{} 

False True

Fig. 9. A simple ICFG with a single conditional branch. Contextual
constraints are shown above each basic block. For example, because node
B is dominated by the false branch of if (P), it has the constraint ¬P .

As ICFGs grow in size and complexity, the number of con-
ditional branches typically increases, introducing constraints
in each branch. For instance, a branch condition, x =i 0,
will introduce x ̸=i 0 in the false branch and x =i 0 in the
true branch, and will be in effect for all nodes dominated by
that conditional edge. Constraints from branch conditions can
accumulate and by testing the satisfiability of these constraints
within their different contexts we can perform constraint-driven
transformations. These transformations automatically eliminate
infeasible conditional edges and can significantly reduce the
size and complexity of an ICFG.

For example, Figure 9 shows an if-statement in node A.
If control flow reaches C, then P must have been true, and
if it reaches B, P must have been false. All nodes that are
dominated by C will nominally only be executed if P is true,
and all nodes that are dominated by B will only be executed if
P is false. Control-flow nodes dominated by a conditional edge
are said to be within the same branch context. A constraint
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determined by the branch condition and a conditional edge is
associated with each branch context.

B
if (Q)

{¬P} 

A
if (P)

{} 

False

E

{¬P, Q} 

True

D

{¬P, ¬Q} 

False

C

{P} 

F

{P} 

True

G

{} 

(a) Nodes B, D, and E are all within the branch context of the false
conditional edge of node A (red box), and all share the ¬P constraint.
Within that branch context, there are two nested branch contexts
descending from node B (fuchsia and green boxes).

B
if (Q)

{¬P} 

A
if (P)

{} 

False

E

{¬P, Q} 

True

D

{¬P, ¬Q} 

False

C

{P} 

F

{P} 

True

G

{} 

E

(b) After ¬P∧Q is recognized as unsatisfiable, node E is automatically
removed.

Fig. 10. A more complex ICFG with nested branch contexts, before and
after automatic pruning of infeasible paths. For this example, P and Q are
Boolean expressions such that ¬P ∧Q is unsatisfiable.

There may also be nested branch contexts, where there
exists a branch context within a branch context, as in Figure 10.
Because E is dominated by both the false branch of if (P)
in node A, and dominated by the true branch of if (Q)
in B, the branch-context constraints in E are {¬P,Q}. In
complex ICFGs, nodes may exist within deeply-nested branch
contexts. Sometimes, the accumulated constraints conflict and
are unsatisfiable. For instance, if the conjunction of the branch
context constraints {¬P,Q} is unsatisfiable, then all nodes
within the branch context are unreachable. Because they are
unreachable, all the nodes dominated by the true edge can be
eliminated from the ICFG.

Because PIL statements in ICFGs are in SSA form, the
constraints produced by the assignment statements within an
ICFG are not dependent on control flow. In Blaze, these
constraints are called base constraints. Each conditional edge
introduces a branch context with corresponding branch-context
constraints. For each branch context, Blaze generates an SMT
formula that combines the base constraints with the constraints
of the current branch contexts. This formula is checked for
satisfiability; if it is unsatisfiable, then the conditional edge is
removed. Any nodes unreachable from the ICFG root are then
removed.

IV. APPLICATIONS

A. Automated ICFG Simplification

Fig. 11. A foo function that calls the bar function from two different
branch contexts.

Fig. 12. The bar function, which tests if its first argument is zero.

Blaze can statically determine if conditional edges are
infeasible under a given branch context and can therefore be
pruned. For example, Figure 11 shows a function foo which
twice calls function bar—shown in Figure 12. The arg1
variable of function foo is provided as an argument at both of
the bar call sites. At the IF statement in the root node of the
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Fig. 13. The foo function, with both calls to bar expanded. Blaze is able to
automatically prune the infeasible conditional edges in each instance of bar
from the constraint on arg1 introduced in foo.

ICFG, the left branch context asserts arg1 =i 0 and the right
branch context asserts arg1 ̸=i 0. The function being called,
bar, checks if its argument is zero and branches accordingly.
Figure 13 shows the result of expanding both call sites in a
Blaze ICFG within these two calling contexts. The constraints
from each of the calling contexts are used to automatically
prune the respective infeasible conditional edges in bar.

Fig. 14. Example of a user manually introducing a constraint to an ICFG
created from the server_updated function in cvs.

A user may also directly specify global constraints on PIL
variables in ICFGs. For example, in Figure 14, a user intro-
duces a constraint in the root node of the server_updated
function in a modified version of the CVS program [10].
The third argument to the server_updated function cor-
responds to a file status, and a user may be interested in only
certain types of server responses. Using this constraint, Blaze
is able to prune away the irrelevant portions of the ICFG, as
seen in Figure 15.

B. Type Inference

The PIL type system and type checker in Blaze—described
in Section III-C—provides type inference designed for binary
analysis. While the PIL type system is distinct from the
type system found in source languages such as C and C++,
type inference in Blaze can perform a similar role to that of

Fig. 15. Blaze uses the constraint entered manually by a user in Figure 14
to automatically prune away the red-highlighted nodes in the ICFG.

Fig. 16. An example scenario of type unification in a binary from an IoT
device. Statement A is a store to an address of a PIL variable. It provides an
incomplete hint about the size of var_20. At B, an assignment statement
produces a type-equality constraint between r0#1@0 and the address of
var_20. At C, a call to a Standard C Library function with known PIL
types provides a subtype constraint on r0#1@0.

type recovery when reverse engineering a program binary. We
present two scenarios of how type inference in Blaze can be
used to produce additional type information by unifying a set
of related constraints and recognizing recursive types.

All PIL terms are associated with type constraints that
link related type hints across statements. As these constraints
are resolved, more specific types for every PIL term may be
inferred. In the scenario shown in Figure 16, Blaze infers
var_20 is a CString 4 by using the available subtype
constraints. Figure 17 depicts the unification of these con-
straints. Statement A provides hints that var_20 is a 32-bit bit
vector and is referenced through a 32-bit pointer. At Statement
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A

&var_20 : T1
T1 <: Pointer 32 T2

var_20 : T3
T2 = T3
T3 <: BitVec 32

B r0#1 : T4
T1 = T4

C

strtol : T5
T5 <: Function T6 [T7 T8 T9]
T4 = T7
T7 <: Pointer 32 T10
T10 <: CString ?

(a) First, type constraints are generated from all PIL statements
and expressions within the ICFG. For this example, we only need
to examine constraints from the statements labeled A, B, and C
in Figure 16. The relevant type constraints introduced by those
statements are listed here with the corresponding statement label.

T2 = T3 T1 = T4 T4 = T7
T1 <: Pointer 32 T2
T2 <: BitVec 32
T1 <: Pointer 32 T10
T5 <: Function T6 [T1 T8 T9]
T10 <: CString ?

(b) All unification variables that occur on the right-hand side of a type-
equality constraint from (a) are substituted with the corresponding left-
hand side in all constraints.

T1 <: Pointer 32 T2
T1 <: Pointer 32 T10

T2 = T10

(c) The right-hand sides of two subtype constraints on T1 are unified
together to produce an additional type-equality constraint. This
corresponds to the requirement that the pointee types must unify.

T2 = T10
T2 <: CString ?

(d) The new T2 = T10 type-equality constraint is substituted against a
subtype constraint derived in (b).

T2 <: BitVec 32
T2 <: CString ?
T2 <: CString 4

(e) A subtype constraint from (b) is unified against the new constraint
from (d). Recall that BitVec is parameterized over a bit-width while
CString is parameterized over a string length. After this step, all
constraints have been unified. This step unifies two subtype constraints
on var_20.

Fig. 17. A unification example for variable var_20 based on the PIL
statements from Figure 16. The unification algorithm terminates once all
generated constraints have been resolved through substitution.

Fig. 18. A recursive call within the function kvlist_get from the bryant
challenge program [10]. The arg1#0@0 variable has the same type as the
field at arg1#0@0+i 0x10.

B, an assignment produces a type-equality constraint between
r0#1@0 and the address of var_20. Finally, in Statement
C, a call to a strtol, a Standard C Library Function with a
known PIL type, provides a subtype constraint on r0#1@0.

The result of unifying the type constraints from these
statements is that a 32-bit bit vector (BitVec 32) unifies
with a C string of unknown length (CString ?) through type
equality constraints on pointers. This results in CString 4
as the inferred type of var_20. Unfortunately, this inferred
type is not entirely correct. There are an additional four bytes
of adjacent storage on the stack which should be associated
with var_20. If the type checker were provided with accurate
storage information then it could correctly infer the CString
8 type. Future improvements to Blaze’s static analysis of
storage locations can provide more accurate information.

Blaze is also able to infer recursive data types, such as
linked lists. In Figure 18, a function named kvlist_get
from the bryant challenge program [10] recursively calls
itself, passing in the contents of the field at offset 0x10
bytes—128 bits—as the first argument of its recursive call.
From this, constraints between the arguments of the recursive
call and the function parameters are formed. Blaze then is able
to infer the recursive field in the linked-list node structure:

T = Pointer 64
(Record
{ 0 : Pointer 64 (CString ?)
, 64 : BitVec 64
, 128: T })

The type T is a record with a pointer to a C string of an
unknown length in the first field and a recursive reference to its
own type in the third field. The second field is another pointer
to a C string, but within the context of kvlist_get there
is only enough information provided to infer it is a 64-bit bit
vector.

C. Guided Search

Blaze is particularly well-suited for exploring ways to
reach points of interest (POIs) in a program, such as possible
vulnerabilities found by automated analysis. For example, if
there is a call to sprintf that appears to use an attacker-
controlled format string, then it may lead to a format string
vulnerability. Whether or not that vulnerability can be exer-
cised depends on several factors, one of which is whether the
location is reachable from the attack surface. Blaze’s guided
search feature can help a vulnerability researcher construct
an ICFG between an attack vector and a POI. Blaze’s focus
and pruning features, as well as the accompanying automated
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Fig. 19. A user inputs a point of interest through the Blaze plugin in Binary
Ninja.

Fig. 20. When guided search is enabled, Blaze highlights all call sites that
reach the selected target POI. In this example, a single call in the cgiMain
function of a web server from an IoT device reaches the POI location defined
in Figure 19 and is highlighted in red.

simplification, complement guided search by narrowing the
code which must be reviewed.

A POI is required to use the guided search feature. Users
can mark a particular location as a POI, giving it an optional
name and description, as seen in Figure 19. This POI marks
a possible command injection vulnerability in a web service
running on an IoT device. The program’s entry function,
cgiMain, calls many functions that never reach the POI.
However, when the POI is enabled in Blaze’s guided search,
all call sites that lead to the POI are highlighted. Figure 20
shows the cgiMain function with guided search enabled. A
single call site among the 28 expandable calls is highlighted
in red, making it clear to the user which path to follow. Using
Blaze’s focus feature, then expanding the call site, results in a
simplified ICFG that links the entry function and the POI.

V. LIMITATIONS AND FUTURE WORK

Development of Blaze is ongoing and we plan to improve
the framework in several ways. Our immediate plans include
support for interprocedural path analyses, extensions to the
PIL type system, and the addition of a functional-style code
representation designed for program analysis.

Blaze was originally designed for interprocedural paths
and earlier analyses were written in terms of these paths
rather than interprocedural control-flow graphs. Previously,
Blaze supported testing path feasibility, path sampling, and
path differencing. We plan to rewrite these analysis algorithms
in terms of ICFGs where an interprocedural path can be
represented as an ICFG in which all conditional branches have
been pruned to have a single conditional edge. We have found

these features useful in practice and they provide a foundation
for other capabilities.

We are developing improvements to the PIL type system
that we expect will support using type checking as a means to
discover vulnerabilities in program binaries. The most notable
planned improvements are support for refinement types and
sum types in PIL. Refinement types [27], [28] will permit
adding inferred predicates to existing PIL types and support
the use of PIL type checking as a method for finding vul-
nerabilities that occur from incorrect bounds checking. The
addition of sum types [18] will support the lifting of low-level
dispatch code to structural pattern matching in PIL. We are
also considering how to incorporate type annotations supplied
interactively by a user; providing another opportunity for user-
directed automation.

Additionally, we are considering how a functional-style
code representation for program analysis could be well-suited
for composable, partial analysis of a program binary and
improved reasoning over memory and loops.

VI. CONCLUSION

Blaze is an open-source, binary analysis framework written
in Haskell which provides a foundation for research and tool
development that leverages interprocedural analysis and type
systems. Interprocedural CFGs provide reverse engineers with
additional context and opportunities to focus and simplify
the region of the program being analyzed, and typed PIL
statements assist in recovering and communicating program
semantics. Interprocedural CFGs and typed PIL statements are
the prominent code representations in Blaze and together make
Blaze well-suited for developing interactive reverse engineer-
ing and vulnerability discovery tools.

In this paper, we presented a technical description of the
functionality and implementation of Blaze. We also demon-
strated the use of Blaze for interaction with ICFGs and PIL
type inference through a Binary Ninja plugin. The source code
of Blaze is available from: https://github.com/kudu-dynamics/
blaze.
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