
podft: On Accelerating Dynamic Taint Analysis with
Precise Path Optimization

Zhiyou Tian
Xidian University

21151213645@stu.xidian.edu.cn

Cong Sun
Xidian University

suncong@xidian.edu.cn

Gang Tan
Pennsylvania State University

gtan@psu.edu

BAR 2023

Dongrui Zeng
Palo Alto Networks

dzeng@paloaltonetworks.com

Background and Motivations

• Dynamic taint analysis (DTA)
• What is it?
• Useful for security

• Binary-level dynamic data-flow tracking (DFT)
• Dynamic binary instrumentation (DBI)
• Virtual machine manager (VMM)
• Emulator

Background and Motivations

• DBI-based DTA
• Focus on explicit flows
• Hold the tainting states within tagging memory

• Challenge of DTA —— significant performance penalty

High Cost !

Background and Motivations

• Existing works
• Lift (MICOR 2006)

• static fast path
• Libdft (VEE 2012)

• on Pin
• DBI inline routines

• TaintRabbit (ASIA CCS 2020)
• on DynamoRIO
• dynamic fast path

• SELECTIVETAINT (USENIX 2021)
• static binary rewriting
 bloat the attack surface
• value-set analysis
 cannot work on library code

Our work —— podft defines and enforces various fast paths

• podft advantages
• more efficient
• not bloat the attack surface
• consider library code
• flexible scalability

Design of podft

• podft overview

• BPA-based CFG Construction
• VSA-based tainted inst identification
• Tracking policy construction
• PDG-based function abstract(from SDFT)
• Pin-based Tracker

Fig1. Framework of podft (dashed block = usage of existing tools)

Next —— give a toy example to demonstrate

Example demonstration

• BPA-based CFG Construction
• VSA-based tainted inst identification

basic block A (bbl-a)

basic block B (bbl-b)

basic block C (bbl-c)

…etc
Fig.2 toy example

Example demonstration

• Tracking policy construction
• naive fast path ! main(bbl-c)
• complex fast path ! toy_test+0x44(bbl-b)
• slow path !toy_test(bbl-a)
• function fast path !printf etc..

Why?
basic block A (bbl-a) basic block B (bbl-b) basic block C (bbl-c)

Example demonstration

• Tracking policy construction

• naive fast path ! main(bbl-c)
• Not contain potentially tainted instructions

because

basic block C (bbl-c)

Example demonstration

• Tracking policy construction

• complex fast path ! toy_test+0x44(bbl-b)
• Contain potentially tainted instructions
• Hot BBL (be executed multiple times)
• TaintedMem(bbl) ∩ MergedDep(bbl) =∅.

because

The data delivered to the sink are irrelevant to the tainted data from the source.
basic block B (bbl-b)

Example demonstration

• Tracking policy construction

• Slow path !toy_test(bbl-a)
• Contain potentially tainted instructions
• Not hot or TaintedMem(bbl) ∩ MergedDep(bbl) ≠ ∅

because
basic block A (bbl-a)

Example demonstration

• PDG-based function abstract

• Function fast path !printf etc..

• Pin-based Tracker
 Input:

• Function-level policies
• Naive/Complex fast path policies
• Slow path policies

 output:
• DTA results

Next ——podft’s efficiency and effectiveness.

Evaluations

• Experimental Settings
• Desktop with a 2.8GHz×4 Intel Core(TM) i7-7700HQ CPU, 8GB RAM,

 and Linux 3.16.0 kernel (Ubuntu 14.04 32-bit).
• The DBI framework is Pin v2.14, and libdft.

• Benchmark Programs

Evaluations

• Efficiency of podft
• Compare podft’s efficiency with Taint Rabbit , Dytan, Triton , and Taintgrind.

podft achieves
slowdowns of 1.6x

to 27.9x with an
average slowdown of

10.6x.
podft is more

efficient than the
other DTA tools.

Evaluations

• Efficiency of podft
• Compare podft’s efficiency with SELECTIVETAINT.

podft achieves
slowdowns of 1.6x to
27.9x with an average

slowdown of 12.5x.
and is generally more

efficient than
SELECTIVETAINT.

Evaluations

Real exploits detection by podft
Develop Pintool over podft to track vulnerability of CVEs

• Effectiveness of podft’s Dynamic Taint Analysis

Work in progress

more scalable and more flexible to be used in traditional DTA

• Work in progress

Fig.2. the workflow of NeuTaint(SP2020)

Hot BBL
Hot BBl memory

abstraction

NN Training

Hot BBl feature
extraction

neural hot basic block embedding

Fig.1. the workflow of hot BBL embedding

THANKS
Thanks for listening

