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Related Work / Decompilers

n Essential for many binary analysis approaches

n Each decompiler has a different focus!

n There is still plenty of room for improvements!

https://github.com/revng

https://www.qbssoftware.com/jeb-decompiler.html

https://mobile.twitter.com/retdec

https://ghidra-sre.org

https://hex-rays.com

https://github.com/USECAP/dream

https://binary.ninja

https://github.com/revng
https://www.qbssoftware.com/jeb-decompiler.html
https://mobile.twitter.com/retdec
https://ghidra-sre.org/
https://hex-rays.com/
https://github.com/USECAP/dream
https://binary.ninja/
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Decompilation can be done differently!
Output 1 Output 2

int dividability_rules() {
int var_0; int * var_1;
printf("Enter a number: ");
var_1 = &var_0;
__isoc99_scanf("%d", var_1);
printf("A number is dividable by %d:\n", var_0);
switch(var_0) {

case 0x0:
printf("not possible");
break;
...

case 0xa:
printf("last digit is 0");
break;

case 100:
printf("the last two digits are 0");
break;

case 125:
printf("last three digits dividable by 125");
break;

default:
printf("we have no rule");

} 
return 0;

}

undefined4 dividability_rules(void) {
int iVar1; int local_10 [3];
printf("Enter a number: ");
__isoc99_scanf(&DAT_0804c025,local_10);
iVar1 = local_10[0];
printf("A number is dividable by %d:\n",local_10[0]);
if (local_10[0] == 0x7d) {

printf("last three digits dividable by 125",iVar1);
return 0; }

if (local_10[0] < 0x7e) {
if (local_10[0] < 0xb) {

switch(local_10[0]) {
case 0:

printf("not possible",iVar1);
return 0;
...

case 10:
printf("last digit is 0",iVar1);
return 0;

} 
} else {

if (local_10[0] == 100) {
printf("the last two digits are 0",iVar1);
return 0;

}}}
printf("we have no rule",iVar1); return 0; }
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User Surveys
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User Surveys Metadata
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User Survey 1

n Research Questions:

n What decompilation aspects should be improved to enhance manual analysis?

n What readability aspects are important to users?

n What are the limitations of current approaches and the state-of-the-art?
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Example 1

Respondents 
liked switch

They didn‘t
like the goto
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Example 2

+ Short & Clean
+ For-Loop

- Long & Complex
- Too many Veriables
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Survey 1 TL;DR

n Readability depends on user preference and the given analysis task

Ø Users crave configurable decompilers

n Readability > Assembly Structure

n Identified many aspects with room for improvements

n Instruction Idioms, Switch Reconstruction, … 
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Contributions

n Various improvements for DREAM to get academia “back on track”

with commercial state-of-the-art decompilers

n dewolf Decompiler

n highly configurable, easily expandable, and open-source

n Available in Binary Ninja’s Plugin Manager and on dogbolt.org

n We publish all survey results [1]

[1] https://github.com/steffenenders/dewolf-surveys

https://dogbolt.org/
https://github.com/steffenenders/dewolf-surveys
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dewolf Overview
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dewolf Improvements over DREAM

long xor(void * arg1, long arg2, long arg3, long arg4) {
int i;
int var_1;
void * var_0;
printf(/* format */ "%lu\n", arg2);
for (i = 0; arg2 > i; i++) {

var_0 = arg1 + i;
*var_0 = *var_0 ^ *(arg3 + (i + (0L << 0x40)) % arg4);

}
var_1 = i;
return var_1;

}

int64_t xor(int64_t arg1, int64_t arg2, int64_t arg3, int64_t arg4) {
printf("%lu",arg2);
int32_t var_c = 0x0L;
while(true) {

int64_t rax_14 = var_c /* sx None */;
if ((arg2 <= var_c /* sx None */)) {

break;
}
char* rax_4 = (arg1 + var_c /* sx None */);
uint64_t rsi_1 = *rax_4 /* zx char */ /* zx uint32_t */;
int64_t rax_6 = var_c /* sx None */;
int64_t rdx_1 = 0x0L;
char* rax_9 = (arg3 + ((rdx_1:rax_6) % arg4));
uint64_t rcx = *rax_9 /* zx char */ /* zx uint32_t */;
int64_t rax_12 = (arg1 + var_c /* sx None */);
uint64_t rdx_4 = (rsi_1.esi ^ rcx.ecx) /* zx None */;
*rax_12 = rdx_4.dl;
int32_t var_c = (var_c + 0x1L);

}
return rax_14;

}

vs.

Switch Variable Detection Subexpression Elimination Constant Representation
For-loop Recovery Instruction Idiom Handling Array Access Detection
Elimination of Dead Paths and Loops Elimination of Redundant Casts Continue in Loops
Custom Logic Engine Improved Out-of-SSA+ + =
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User Survey 2+3 Research Questions

n Research Questions:

n Does dewolf produce readable & comprehensible output to qualify as a base for future research?

n (Can dewolf exceed state-of-the-art decompilers in certain cases?)

n To what extent do respondents tolerate diverging from the assembly during decompilation?

n What are further areas to improve readability in future research?
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Comprehension Questions

n What is the purpose of the function?

n What TLDs does the DGA utilize?

n What is the most used TLD?

n Which of the provided domains could be

generated by the DGA?

n How many different domains can be

generated by the DGA?
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Comprehension Results Divided by C-Skills (self assessment)
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Decompiler Comparison
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What participants (dis)liked in state-of-the-art decompilers

Positive
Switch-Recovery

Low Nesting Depth

for-loops, if possible

Good Type Recovery

Less Casts

Array Access Detection

Constant Annotations

Negative
Deeply Nested If/Else

High Nesting Depth

While-loops instead of for-loops

Bad Type Recovery

Explicit Casts

Too many unnecessary variables

String Parameters

vs.
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5 Instructions 10 Instructions 15 Instructions

Introducing Copies during Restructuring?

5 Instructions 10 Instructions15 Instructions

If-Else

Multi-Exit

Multi-Entry

?
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TL;DR

n Future decompilers (focusing on manual analysis) should:

n Favor readability over sticking to the assembly

n Be highly configurable!

n If you are into decompilation, you should:

n Check out dewolf (great base for new research, imho)

n Read the paper and survey results
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Q&A
@steffenenders_

https://github.com/fkie-cad/dewolf

steffen.enders@fkie.fraunhofer.de


