
© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 0

DEWOLF: IMPROVING DECOMPILATION
BY LEVERAGING USER SURVEYS
Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka,
Elmar Padilla, Er Xue Hui, Henry Low, Nicholas Sim
steffen.enders@fkie.fraunhofer.de 2023-03-03 | BAR Workshop, San Diego



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 1



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 2

Related Work / Decompilers

n Essential for many binary analysis approaches

n Each decompiler has a different focus!

n There is still plenty of room for improvements!

https://github.com/revng

https://www.qbssoftware.com/jeb-decompiler.html

https://mobile.twitter.com/retdec

https://ghidra-sre.org

https://hex-rays.com

https://github.com/USECAP/dream

https://binary.ninja

https://github.com/revng
https://www.qbssoftware.com/jeb-decompiler.html
https://mobile.twitter.com/retdec
https://ghidra-sre.org/
https://hex-rays.com/
https://github.com/USECAP/dream
https://binary.ninja/


© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 3

Decompilation can be done differently!
Output 1 Output 2

int dividability_rules() {
int var_0; int * var_1;
printf("Enter a number: ");
var_1 = &var_0;
__isoc99_scanf("%d", var_1);
printf("A number is dividable by %d:\n", var_0);
switch(var_0) {

case 0x0:
printf("not possible");
break;
...

case 0xa:
printf("last digit is 0");
break;

case 100:
printf("the last two digits are 0");
break;

case 125:
printf("last three digits dividable by 125");
break;

default:
printf("we have no rule");

} 
return 0;

}

undefined4 dividability_rules(void) {
int iVar1; int local_10 [3];
printf("Enter a number: ");
__isoc99_scanf(&DAT_0804c025,local_10);
iVar1 = local_10[0];
printf("A number is dividable by %d:\n",local_10[0]);
if (local_10[0] == 0x7d) {

printf("last three digits dividable by 125",iVar1);
return 0; }

if (local_10[0] < 0x7e) {
if (local_10[0] < 0xb) {

switch(local_10[0]) {
case 0:

printf("not possible",iVar1);
return 0;
...

case 10:
printf("last digit is 0",iVar1);
return 0;

} 
} else {

if (local_10[0] == 100) {
printf("the last two digits are 0",iVar1);
return 0;

}}}
printf("we have no rule",iVar1); return 0; }



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 4

User Surveys



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 5

User Surveys Metadata

37

44

54

47

54

31

0

10

20

30

40

50

60

Survey 1 Survey 2 Survey 3

Survey Respondents

Complete Incomplete

23

20

11

Respondents Skills (Survey 3)

Reversing + C C None Survey 1 Survey 2 Survey 3
0

50

100

150

200

250

Time (min)



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 6

User Survey 1

n Research Questions:

n What decompilation aspects should be improved to enhance manual analysis?

n What readability aspects are important to users?

n What are the limitations of current approaches and the state-of-the-art?



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 7

Example 1

Respondents 
liked switch

They didn‘t
like the goto



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 8

Example 2

+ Short & Clean
+ For-Loop

- Long & Complex
- Too many Veriables



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 9

Survey 1 TL;DR

n Readability depends on user preference and the given analysis task

Ø Users crave configurable decompilers

n Readability > Assembly Structure

n Identified many aspects with room for improvements

n Instruction Idioms, Switch Reconstruction, … 



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 10

Contributions

n Various improvements for DREAM to get academia “back on track”

with commercial state-of-the-art decompilers

n dewolf Decompiler

n highly configurable, easily expandable, and open-source

n Available in Binary Ninja’s Plugin Manager and on dogbolt.org

n We publish all survey results [1]

[1] https://github.com/steffenenders/dewolf-surveys

https://dogbolt.org/
https://github.com/steffenenders/dewolf-surveys


© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 11

dewolf Overview

Frontend

0010 1110

1100 0001

Lifting

Backend

Code 
Generator

(Preprocessing/) Pipeline Stages

Dataflow
algorithms

Control-flow
algorithms



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 12

dewolf Improvements over DREAM

long xor(void * arg1, long arg2, long arg3, long arg4) {
int i;
int var_1;
void * var_0;
printf(/* format */ "%lu\n", arg2);
for (i = 0; arg2 > i; i++) {

var_0 = arg1 + i;
*var_0 = *var_0 ^ *(arg3 + (i + (0L << 0x40)) % arg4);

}
var_1 = i;
return var_1;

}

int64_t xor(int64_t arg1, int64_t arg2, int64_t arg3, int64_t arg4) {
printf("%lu",arg2);
int32_t var_c = 0x0L;
while(true) {

int64_t rax_14 = var_c /* sx None */;
if ((arg2 <= var_c /* sx None */)) {

break;
}
char* rax_4 = (arg1 + var_c /* sx None */);
uint64_t rsi_1 = *rax_4 /* zx char */ /* zx uint32_t */;
int64_t rax_6 = var_c /* sx None */;
int64_t rdx_1 = 0x0L;
char* rax_9 = (arg3 + ((rdx_1:rax_6) % arg4));
uint64_t rcx = *rax_9 /* zx char */ /* zx uint32_t */;
int64_t rax_12 = (arg1 + var_c /* sx None */);
uint64_t rdx_4 = (rsi_1.esi ^ rcx.ecx) /* zx None */;
*rax_12 = rdx_4.dl;
int32_t var_c = (var_c + 0x1L);

}
return rax_14;

}

vs.

Switch Variable Detection Subexpression Elimination Constant Representation
For-loop Recovery Instruction Idiom Handling Array Access Detection
Elimination of Dead Paths and Loops Elimination of Redundant Casts Continue in Loops
Custom Logic Engine Improved Out-of-SSA+ + =



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 13

User Survey 2+3 Research Questions

n Research Questions:

n Does dewolf produce readable & comprehensible output to qualify as a base for future research?

n (Can dewolf exceed state-of-the-art decompilers in certain cases?)

n To what extent do respondents tolerate diverging from the assembly during decompilation?

n What are further areas to improve readability in future research?



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 14

Comprehension Questions

n What is the purpose of the function?

n What TLDs does the DGA utilize?

n What is the most used TLD?

n Which of the provided domains could be

generated by the DGA?

n How many different domains can be

generated by the DGA?



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 15

Comprehension Results Divided by C-Skills (self assessment)



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 16

Decompiler Comparison

0

10

20

30

40

50

Rank 1 Rank 2 Rank 3

…



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 17

What participants (dis)liked in state-of-the-art decompilers

Positive
Switch-Recovery

Low Nesting Depth

for-loops, if possible

Good Type Recovery

Less Casts

Array Access Detection

Constant Annotations

Negative
Deeply Nested If/Else

High Nesting Depth

While-loops instead of for-loops

Bad Type Recovery

Explicit Casts

Too many unnecessary variables

String Parameters

vs.



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 18

5 Instructions 10 Instructions 15 Instructions

Introducing Copies during Restructuring?

5 Instructions 10 Instructions15 Instructions

If-Else

Multi-Exit

Multi-Entry

?



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 19

TL;DR

n Future decompilers (focusing on manual analysis) should:

n Favor readability over sticking to the assembly

n Be highly configurable!

n If you are into decompilation, you should:

n Check out dewolf (great base for new research, imho)

n Read the paper and survey results



© Cyber Analysis & Defense Department, Fraunhofer FKIE

March 3rd 2023, Workshop on Binary Analysis Research (BAR) 2023, San Diego, CA, USA

Slide 20

Q&A
@steffenenders_

https://github.com/fkie-cad/dewolf

steffen.enders@fkie.fraunhofer.de


