
PISE
PROTOCOL INFERENCE USING

SYMBOLIC EXECUTION AND AUTOMATA LEARNING
Ron Marcovich, Orna Grumberg, Gabi Nakibly

Technion – Israel Institute of Technology

{ron.mar, orna, gnakibly}@cs.technion.ac.il

What is protocol inference?

RCPT TO: ?????? 250 OK

MAIL FROM

RCPT TO

start

HELO 250 OK

250 OK

DATA

550

RCPT TO

RSET

R:
R:

R:

R:

R:

S:

S:

S:
S:

R:

Mail Server

What is protocol reverse engineering?

“R:” – Receive
“S:” - Send

Motivations:

Finding Bugs Finding Backdoors Analyzing Malware

Manual Protocol Inference is Hard!
• It can take days or even weeks!

start

R: HELO S: 250 OK
R: MAIL FROM

S: 250 OK

R: RCPT TO

S: 250 OK

R: DATA

S: 550

R: RCPT TO

R: RSET

RCPT TO: ????

Research Goal

• Automatically infer the protocol

• Our input:
• Binary code of a program

• Our output:
• State machine of the protocol
• Messages formats

Past traffic captures

Active protocol peer

Source code

Assumptions

We assume: We do not assume:

Protocol Regularity

Messages’ formats

Under the Hood

Overview

Learner
L* Algorithm

Alphabet = Message Types

State Machine

TeacherQueries

Answers

L* Algorithm for protocols

• {R:init, S:start}
• {R:init, R:init}

R:init S:start

R:finish

R:data

init

start

data

finish

Client Server

Answering Membership queries
• Let’s assume for now that we know the message types

Teacher

Is this sequence of
message types valid

for the protocol?

Yes/No
Learner
L* Algorithm Symbolic Execution

?

a > 3 ,b = 2789
Symbolic Execution

Answering Membership queries
• Is {R: Init, S: Start, R: Data} valid for the protocol?

msg ß Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()

If (msg is Data)

truefalse

.

.

.

Send(Error)
.
.
.

Error()

R: Init

S: Start
R: Datainit

start

data

finish

Client Server

Answering Membership queries
• Is {R: Data} valid for the protocol?

msg ß Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()

If (msg is Data)

truefalse

.

.

.

Send(Error)
.
.
.

Error()

R: Data

init

start

data

finish

Client Server

Discovering message types

• As said, we do not know in advance the protocol’s message types.

• We update membership queries to discover it little by little.

L*
algorithm

Symbolic
Execution

Is this sequence of
message types valid

for the protocol?

Yes/No
If yes, here are message
types that can follow the

sequence.

Extend L* to
handle new

message types

Probing for following message types

• What message types can follow {R: Init}?

msg ß Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()

If (msg is Data)
.
.
.

Error()

R: Init

Get
examples

init

start

data

finish

Client Server

init

start

data

finish

Client Server

Probing for following message types
• What message types can follow {R: Init, S: Start}?

msg ß Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()

If (msg is Data)

truefalse

.

.

.

Send(Error)
.
.
.

Error()

R: Init

S: Start
Unknown
symbolic

value
???

Probing for following message types

msg ß receive()

if (msg begins with ‘data’) {

// Constraint: msg begins with ‘Data’

} else {

// I can’t parse this message, error

}

Resume Execution:
Wait for message to be

parsed

Constraints are
developed

according to the
parsing logic

Get concrete
messages that

match constraints

Example Messages Find features of
message type

RCPT TO: ?????
RCPT TO: email1@blabla.com
RCPT TO: user2@lalala.bbb

RCPT TO: person3@nana.ccc

Concrete messages -> Message type

L*
algorithm

Symbolic
Execution

Is this sequence of
message types valid

for the protocol?

Yes/No
If yes, here are message

types that can follow the
sequence.

Tying it all together

{S:start,R:data,R:finish}

M={}

R:init

R:data

R:finish

M={R:init}

S:start

L*
algorithm

Symbolic
ExecutionYes J

{R:init}mnext=

valid ?
M={R:init,S:start}M={R:data}

No L

M={R:init,R:data}M={R:init,R:data,R:finish}

{}

Message Types

R:init S:start
R: data R: finish

An illustrative example

Equivalence Query

• Approximated as in the original L* work, with a test suite

• Probing is also in use for the test suite
• To discover missing message types

Example - method’s output

Caveats

• PISE is as good or as bad as the symbolic tool it uses.

• Currently, PISE uses angr.

- Trouble supporting multiple threads.

- Does not fully support windows API

L*
algorithm

Symbolic
Execution

Summary

start

R: HELO S: 250 OK R: MAIL
FROM

S: 250 OK

R: RCPT TO

S: 250 OK

R: DATA

S: 550

R: RCPT TO

R: RSET

QUESTIONS

