
Understanding MPU Usage in
Microcontroller-based Systems in the

Wild
Wei Zhou, Zhouqi Jiang, Le Guan

Agenda

l Introduction to Memory Protection Unit (MPU)

l MPU adoption in the wild

l Common pitfalls and limitations in using MPU

l Mitigation suggestions

l Summary and disclosure

MMU on PC à MPU on MCU

l The Memory Management Unit (MMU), a standard feature on traditional
computing platforms, enforces page-based permission control (R/W/X).

l MMU is absent in resource-restricted microcontroller units (MCUs) .

l As a stripped-down version of MMU, the Memory Protection Unit (MPU)
provides basic security functions for MCUs, e.g., Arm Cortex-M series MCUs.

Memory CPUCache

System bus

Peri.
MMU

TLB

What is Memory Protection Unit (MPU)

l How MPU works?

• For a limited number of
configurable memory regions,
MPU assigns access
permissions (R/W/X) based on
the current execution privilege
level

• A fault happens when a memory
access violates the access
permission
• MPU can only be configured by

privileged code

CPU

MPU
MEMORIES

(RAM
ROM)

Peripheral

How to Program MPUs (PMSAv7)?
l MPU Control Register (MPU_CTRL)
• Enable bit: enable the MPU

• The PRIVDEFENA bit: enable the default memory map for privileged access

l MPU Region Base Address Register (MPU_RBAR)
• Set the base address and the identifier of a memory region

l MPU Region Attribute/Size Register (RASR)
• AP and XN bit: Set permissions (RWX) of a memory region in privileged and unprivileged level

• TEX, C and B bits: Set the Attributes (e.g., cacheability and shareability) of a memory region

• Size : Set the size of a memory region

l Constrains on MPU memory region
(1) At least 32 bytes (2) Power of two

(3) Must be aligned with 32 bytes (4) Limited region numbers (M0+/3/4 up to 8 and M7 up to 16)

What’s new in MPUS (PMSAv8)?

l More MPU regions (up to 16 regions for both normal and secure world in M23
and M33)

l Use Start and Limit (end) address via separated MPU registers to define any
size of memory regions, but still must be 32-byte aligned

l PMSAv8 also introduces a new memory attribute indirection register
(MPU_MAIR), making it easier for multiple regions to share the same
attribute, while at the same time maintaining their own access permissions.

Agenda

l Introduction to Memory Protection Unit (MPU)

l MPU adoption in the wild

l Common pitfalls and limitations in using MPU

l Mitigation suggestions

l Summary and disclosure

MPU-enabled common security functions

l Code Integrity Protection (CIP): Code regions can be set as non-writable to
prevent code injection and manipulation.

l Data Execution Prevention (DEP): Data regions like stack or heap can be set
non-executable

l Stack Guard (SG): A redzone can be placed at the task stack boundary to detect
stack overflows.

l Kernel Memory Isolation (KMI): User mode (unprivileged) code cannot access
any memory belonging to the kernel space without invoking system calls

l User Task Memory Isolation (TMI): User mode (unprivileged) tasks can only
access its own memory except explicitly shared memory regions that belong to
other tasks or kernel.

l Peripherals Isolation (PI): Peripheral access is restricted to tasks having the
privilege to access it.

MPU adoption in the wild

We did first comprehensive study
on MPU usage of top 30 IoT
operating systems according to
market rating.

Observation

l Only a few MCU OSs use MPU, especially for the open-source OSs

l Even if MPU is supported, only a few security features are enabled by default

We try to find out the
reasons in this work.

Research Question

l Why haven't MPUs been widely used in IoT operating systems?

l Why do only a few OSs enable full-blown MPU-enable protection by
default?

l How do the OSs implement MPU-enable protections in detail?

l Are MPU-enable protections effective?

Case Study : MPU-enabled RIoT
l RIoT runs all the code under privileged level, thus it can only

provide some basic protections such as DEP, and stack guard
(SG) with MPU

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral N

stack for
OS kernel&IRQ handler

code for
Tasks

#0 #1

privileged

privileged

l Data Execution Prevention (DEP): RIoT
enables the MPU region number 0 to cover the
whole RAM region as non-executable

l Stack Guard (SG): RIoT sets last 32 bytes (the
smallest MPU region) on the main stack as
read-only via the MPU region number 1.
Similarly, when switching to another task, RIoT
configures the last 32 bytes of the target task
stack as read-only.

#1

#1

Case Study : FreeRTOS-MPU

l Background region in grey is enabled for privileged access only

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#0

#1

#3

#2

#4

#4

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#4

#0

#3

#1

unprivileged

unprivileged

l Code Integrity Protection (CIP): All
code regions including tasks, system
calls and kernel cannot be written.

l Data Execution Prevention (DEP):
All data regions including tasks, kernel,
and peripheral regions are non-
executable

Case Study : FreeRTOS-MPU

l Kernel Memory Isolation (KMI): The
FreeRTOS kernel API and data are located
in a region of Flash that can only be
accessed while the microcontroller is in
privileged mode (calling a system call
causes a temporary switch to privileged
mode)

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

l User Task Memory Isolation (TMI):
Unprivileged tasks can only access their own
stack and up to three user definable memory
regions (three per task)

Case Study : FreeRTOS-MPU

Case Study : Zephyr

l Peripheral Isolation (PI): By default, a peripheral driver instance is
considered as a kernel object. Therefore, its range is pre-configured to
be inaccessible by user tasks. To access peripherals, a user task
must invoke system calls.

API Call

k_oops()

Return to
Caller

return error
code

Marshal args,
Trigger SW IRQ

Implementation Marshal Return,
Value,exit IRQ Implementation

Lookup
marshaller in
dispatch table

Y Y

F

N

N
User
mode

Valid
Call ID

Verify
P

Zephyr System Call Procedure

Case Study: Keil RTX CMSIS-Zone

l TMI: Based to user configuration, CMSIS-
Zone assigns the access permission (RWX)
to a bundle of memory regions and
peripherals as an isolated execution zone.

l However, Keil RTX does not offer isolation
between normal user tasks and the kernel
(i.e., KMI is unsupported), so code and data
of the kernel cannot be entirely hidden to
user tasks.

Task A
Code A, Data A,
Peripheral A

Task B
(Code B, Data B,

Peripheral B)

Task C
(Code C, Data C,

Peripheral C)

Sh
ar

ed
C

od
e

Each box is a protected execution zone

Agenda

l Introduction to Memory Protection Unit (MPU)

l MPU adoption in the wild

l Common pitfalls and limitations in using MPU

l Mitigation suggestions

l Summary and disclosure

Common pitfalls in using MPU

l Weak protection
• Case study: Bypassing MPU protection in RIoT-MPU
• Case study: Privileged escalation in FreeRTOS-MPU

l Incomplete protection
l Prohibitive overhead
l Conflict with existing system designs
l Fragmented programming Interface

Bypassing MPU in MPU-enabled RIoT

l Bug: MPU can be disabled by control flow
hijacking attack (e.g., ROP)

l Cause: MPU control registers (e.g.,
MPU_CTRL) are located in the system
peripheral region, which can be accessed
by any privileged code. RIoT also provides
an easy-to-use driver APIs for MPU
configurations (e.g., mpu_enable and
mpu_disable driver APIs).

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Stack for
task B

code for
OS kernel

Peripheral N

stack for
OS kernel&IRQ handler

code for
Tasks

#0
#1

privileged

privileged

#1

#1

Stack for
task A

System call in FreeRTOS-MPU
l For compatibility, FreeRTOS MPU does not provide new

kernel APIs for system calls, but wraps the original
kernel APIs with the xPortRaisePrivilege and
vPortResetPrivilege to raise/drop privileges

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

Privileged

Privilege escalation in FreeRTOS-MPU
l Bug1 (v10.4.5 and before): An unprivileged task can raise its

privilege by calling the internal function
xPortRaisePrivilege

l Cause: Privilege escalation function (xPortRaisePrivilege)
is a kernel function which can be called directly

l

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

PrivilegedIs problem
solved?

Patch (v10.4.6): Change it to macro
implementation

Privilege escalation in FreeRTOS-MPU

l Bug2 (v10.4.6 and before): Privilege escalation by branching
directly inside system calls (MPU wrapper APIs) with a
manually crafted stack frame

Stack for
task B

MPU

ARM

Cortex-M

task
BOS kernel

(privileged)

task
A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

Privileged

①

②
③

④
⑤

⑥

l Causes: Privilege escalation operation (SVC interrupt)
is separated with kernel API and uses stack to store
the original privilege level

Exploitation Steps

Buffer
!unprivileged"

…

vars

0x2000XXX

0x2000XXX+N

LR(Return Address)
Stack

growth
Stack Frame
（A function in

unprivileged task)
Buffer

!unprivileged"

…

Padding

0x2000XXX

0x2000XXX+N

Address to SVC 2
Stack Frame
（A function in

unprivileged task)

Buffer
Overflow

Buffer
!unprivileged"

…

Padding

0x2000XXX

0x2000XXX+N

Address to SVC 2
Stack Frame
（A function in

unprivileged task)

Privilege Level
Manipulation

Stack Frame
(MPU wrapper

function)Privileged Level
SP①

②
③

④
⑤

⑥

Patch

l Decide the original privilege level at the beginning using control register

l Introduced the portMEMORY_BARRIER macro to prevent instruction re-
ordering when GCC link time optimization is used

Common pitfalls in using MPU

l Weak protection
• Case study: Bypassing MPU protection in RIoT-MPU

• Case study: Privileged escalation in FreeRTOS-MPU

l Incomplete protection
l Prohibitive overhead
l Conflict with existing system designs
l Fragmented Programming Interface

Incomplete protection

l Unsafe interrupt handlers
• Exception vector reads from the Vector Address Table always use

the default system address map and are not subject to an MPU check

• Interrupt handlers (handle mode) run in the privileged mode, which
can access any resources

l Incomplete protection for peripherals
• Any load, store or instruction fetch transactions to the PPB, within the

range 0xE0000000-0xE00FFFFF (system peripherals), are not
subject to an MPU check.

• Due to the programming constrains (e.g., 32B granules and
alignment requirement), MPU is not suitable for protecting peripherals
with small regions

Incomplete protection

l Incomplete permissions assignment
• No execute-only (XO) permission

• Privileged permission ≥ Unprivileged permissions

l Arm MPU does not restrict peripherals as master, allowing them
to access all memory (e.g., via DMA)

Prohibitive overhead

l To leverage MPU to realize kernel/task isolation, invocation to
kernel APIs has to go through context switch twice
• Our experiment shows that one thousand privilege switches in a

FreeRTOS-MPU system takes 3.5ms on average on the MPS2+
FPGA prototyping system broad (Cortex-M4 AN386) with 25MHZ
CPU clock frequency.

l MPU regions need to be re-configured for different tasks and
applications.
• FreeRTOS has to reset MPU regions #5-7 during an application

switch

• Tizen has to reset MPU regions #3-7 during an app (including
multiple tasks) switch and #6 and #7 during a task switch

Conflict with exiting system design

l Limited MPU regions for real world applications
• Very few available user-defined regions for peripheral isolation

• No OS provides peripheral isolation by default.

• Very few available regions shared between two tasks
• No OS provides shared memory protection by default.

• It is impossible to enable too many security features at same times
• E.g., activating all MPU features in Tizen exhausts all MPU regions

l Porting software leveraging MPU may cause compatibility issues
• Only 30% manufacturers implement MCU hardware security features in

current designs

Fragmented Programming Interface

l Chip vendors may design customized MPUs, which provide better
security guarantees, but impose a steep learning curve for developers

l This may discourage them from adopting MPUs or even lead to
programming errors

l Case study: NXP‘s Kinetis series MCUs discard ARM MPU and integrate
NXP’s proprietary system MPU (i.e., sysMPU)

l It can restrict the permission of peripherals as masters

l When enabled, by default, peripherals cannot access RAM

l To use it, developers have to properly configure sysMPU. Otherwise,
many official demos cannot execute

Agenda

l Introduction to Memory Protection Unit (MPU)

l MPU adoption in the wild

l Common pitfalls and limitations in using MPU

l Mitigation suggestions

l Summary and disclosure

Minimizing pitfalls

l Be careful about permission overlap
• Observation: all open-source OSs but the latest FreeRTOSv10.5

use lower-number MPU regions for kernel protections ().

• Risk: Developer could configure those higher numbered user-defined
MPU regions to override kernel protections.

• Recommendation: System and general protection (e.g., KMI,
DEP,CIP) should use higher-number MPU regions.

Minimizing pitfalls

l Be careful about privilege switch during system calls
• Observation: OSs wrap the kernel APIs by temperately raising and

dropping privilege (e.g., FreeRTOSv10.5.0 before).

• Risk: Privilege escalation with control flow hijacking or a manipulable
stack.

• Recommendation: MCU OSs should provide a system call interface
with software interrupts, similar to traditional OSs. Alternatively, they can
enforce additional caller checks before system call invocations, and the
kernel should make sure that the privilege is dropped after system calls.

Minimizing pitfalls

l Avoid over-privileged execution
• Observation: OSs which only provide protections like Stack Guard, DEP and CIP,

always run the whole system at the privileged level like RIoT.

• Risk: Disabling the desired protections by reconfiguring MPUs with
control flow hijacking attack.

• Recommendation: System drop privilege whenever possible.

Region usage optimization

l Leverage the default MPU region on ARMv7-M
• Default memory access permissions/attributes of memory regions is enforced by

ARM without MPU

• E.g., non-executable for standard and system peripheral regions

Task B Stack
5KB

Task A Stack
3KB

MEMORY
(ARMv7-m)

MEMORY
(ARMv7-m)

l Leverage sub-regions
• Save memory usage.

Task B Stack
5KB

Task A Stack
3KBRunning Task A

4KB MPU region

Running Task B
8KB MPU region

8KB memory used
with one region
Running Task B
SRD = 11111000
Running Task A
SRD = 00000111

12KB memory used

Without Sub-region With Sub-region

Region Usage Optimization

Peripheral A
Peripheral C

l Leverage sub-regions
• Save memory usage

• Save MPU regions

Peripheral H

Peripheral G

Peripheral F

Peripheral E

Peripheral D

Peripheral C

Peripheral B

Peripheral A

Unprivileged

Privileged

Peripheral H

Peripheral G

Peripheral F

Peripheral E

Peripheral D

Peripheral C

Peripheral B

Peripheral APrivileged
(background

region)

SRD
1
0
1
0
1
1
1
0

Only one
MPU Region

At least three separated
MPU Region needed

Without Sub-region With Sub-region
MEMORY MEMORY

l Automatically find optimized region allocation strategies
• MINION (NDSS 2018)

• ACES (USENIX Security 2018)

Region Usage Optimization

New Hardware Security Features

l ARMv8-M architecture extends the TrustZone technology to
Cortex-M series. The secure regions can be used as additional
regions and be assigned with higher privileged level beyond
privileged level in normal world.

l Trustlite proposed execution-aware MPU which the not only
validates data accesses (read/write/execute) but additionally
considers the currently active instruction pointer as the subject
performing the access.

Agenda

l Introduction to Memory Protection Unit (MPU)

l MPU adoption in the wild

l Common pitfalls and limitations in using MPU

l Mitigation suggestions

l Summary and disclosure

Summary

l To our surprise, we found that MPU as a ready-to-use
security feature for protecting microcontroller is rarely used
in real-world products

l We studied the source code of multiple MCU OSs to find
explanations for this situation and eventually identified some
common pitfalls.

l Some of the flaws are fundamental and not remedial in a
short term

l We give recommendations for better use of MPU

Disclosure

l All bugs we demonstrated has been patched in latest
FreeRTOS kernel
• Security update Reference:

https://www.freertos.org/security/security_updates.html

l RIoT developer team has acknowledged our finding, but the
benefit of disabling access to the MPU or the `mpu_disable()`
function without a userspace / kernelspace split is quite limited,
only mildly increases the attack surface in the context of the
attack model RIOT assumes.

https://www.freertos.org/security/security_updates.html

Q&A

